Covariance matrixIn probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Marge d'erreurEn statistiques, la marge d'erreur est une estimation de l'étendue que les résultats d'un sondage peuvent avoir si l'on recommence l'enquête. Plus la marge d'erreur est importante, moins les résultats sont fiables et plus la probabilité qu'ils soient écartés de la réalité est importante. La marge d'erreur peut être calculée directement à partir de la taille de l'échantillon (par exemple, le nombre de personnes sondées) et est habituellement reportée par l'un des trois différents niveaux de l'intervalle de confiance.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Semisimple Lie algebraIn mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Poids (théorie des représentations)Dans le domaine mathématique de la théorie des représentations, un poids d'une algèbre A sur un corps F est un morphisme d'algèbres de A vers F ou, de manière équivalente, une représentation de dimension un de A sur F. C'est l'analogue algébrique d'un caractère multiplicatif d'un groupe. L'importance du concept découle cependant de son application aux représentations des algèbres de Lie et donc aussi aux représentations des groupes algébriques et des groupes de Lie.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Analyse sémantique latenteL’analyse sémantique latente (LSA, de l'anglais : Latent semantic analysis) ou indexation sémantique latente (ou LSI, de l'anglais : Latent semantic indexation) est un procédé de traitement des langues naturelles, dans le cadre de la sémantique vectorielle. La LSA fut brevetée en 1988 et publiée en 1990. Elle permet d'établir des relations entre un ensemble de documents et les termes qu'ils contiennent, en construisant des « concepts » liés aux documents et aux termes.
Fonction analytiquevignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe. En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle.
Composition de fonctionsLa composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée). Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions et . On définit la composée de f par g, notée , par On applique ici f à l'argument x, puis on applique g au résultat.