Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Pédagogie de projetLa pédagogie de projet est une pratique de pédagogie active qui permet de générer des apprentissages à travers la réalisation d'une production concrète. Le projet peut être individuel (comme un exposé ou une maquette) ou collectif (l'organisation d'une fête, d'un voyage, d'un spectacle). Il est semblable à une En effet, lors de la démarche de projet, l’élève est placé en situation de résolution de problèmes, participant de fait au processus d’apprentissage.
Styles d'apprentissageLes styles d’apprentissage constituent une gamme de théories concurrentes et contestées qui, à partir d’un concept commun selon lequel les apprenants diffèreraient dans la façon d’acquérir leur connaissances, vise à tenir compte desdites différences d’acquisition supposées chez les apprenants. Bien que ces diverses théories divergent dans leurs vues sur la façon dont lesdits styles doivent être définis et classés, ces théories suggèrent que tous les apprenants pourraient être étiquetés en fonction d’un « style » d’apprentissage particulier comme « visuel », « auditif », « kinesthésique », « tactile », etc.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Experiential learningExperiential learning (ExL) is the process of learning through experience, and is more narrowly defined as "learning through reflection on doing". Hands-on learning can be a form of experiential learning, but does not necessarily involve students reflecting on their product. Experiential learning is distinct from rote or didactic learning, in which the learner plays a comparatively passive role. It is related to, but not synonymous with, other forms of active learning such as action learning, adventure learning, free-choice learning, cooperative learning, service-learning, and situated learning.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Graphe (type abstrait)thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.