Courburevignette|Le déplacement d'une Dictyostelium discoideum dont la couleur du contour est fonction de la courbure. Échelle : 5 μm ; durée : 22 secondes. Intuitivement, courbe s'oppose à droit : la courbure d'un objet géométrique est une mesure quantitative du caractère « plus ou moins courbé » de cet objet. Par exemple : dans le plan euclidien, une ligne droite est un objet à une dimension de courbure nulle et un cercle un objet de courbure constante positive, valant 1/R (inverse du rayon) ; dans l'espace euclidien usuel à trois dimensions, un plan est un objet à deux dimensions de courbure nulle, et une sphère est un objet à deux dimensions de courbure constante positive.
Courbure principaleEn géométrie différentielle des surfaces, les deux courbures principales d'une surface sont les courbures de cette surface selon deux directions perpendiculaires appelées directions principales. On montre que ce sont les courbures minimale et maximale rencontrées en faisant tourner le plan de coupe. Les courbures principales sont les valeurs propres de l'endomorphisme de Weingarten. Elles caractérisent la géométrie locale des surfaces à l'ordre 2.
Courbure de Gaussvignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.
Membrane (chimie)Une membrane est une structure de faible épaisseur, relativement à sa taille, séparant deux milieux en empêchant toute la matière dans le cas de certaines membranes biologiques, ou seulement une partie de la matière de passer de l'un à l'autre des milieux en fonction de la largeur de ses pores et de son épaisseur. Le concept de membrane date du , mais n’a été utilisé, pour les membranes synthétiques, massivement en dehors des laboratoires qu'à partir de la seconde guerre mondiale.
Courbure moyenneEn mathématiques, on appelle courbure moyenne d'une surface la moyenne des courbures minimale et maximale. Elle est notée (ou encore Km, ou parfois H). C'est un nombre réel, dont le signe dépend du choix fait pour orienter la surface. S'il est relativement simple de définir le rayon de courbure d'une courbe plane, pour une surface les choses se compliquent. On définit alors un analogue comme suit : en un point, on définit un axe, le vecteur normal à la surface. On imagine ensuite un plan tournant sur cet axe.
Membrane plasmiqueLa membrane plasmique, également appelée membrane cellulaire, membrane cytoplasmique, voire plasmalemme, est une membrane biologique séparant l'intérieur d'une cellule, appelé cytoplasme, de son environnement extérieur, c'est-à-dire du milieu extracellulaire. Cette membrane joue un rôle biologique fondamental en isolant la cellule de son environnement.
Robot end effectorIn robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. In the strict definition, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint, the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Parametric surfaceA parametric surface is a surface in the Euclidean space which is defined by a parametric equation with two parameters . Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form. The curvature and arc length of curves on the surface, surface area, differential geometric invariants such as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed from a given parametrization.
Courbure scalaireEn géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.