Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
Asymptotic distributionIn mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators. A sequence of distributions corresponds to a sequence of random variables Zi for i = 1, 2, ..., I .
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Tempsthumb|Chronos, dieu du temps de la mythologie grecque, par Ignaz Günther, Bayerisches Nationalmuseum à Munich. vignette|Montre à gousset ancienne Le temps est une notion qui rend compte du changement dans le monde. Le questionnement s'est porté sur sa « nature intime » : propriété fondamentale de l'Univers, ou produit de l'observation intellectuelle et de la perception humaine. La somme des réponses ne suffit pas à dégager un concept satisfaisant du temps.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Longueur d'un arcthumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).