Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Matching in hypergraphsIn graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a set of subsets of V called hyperedges. Each hyperedge may contain one or more vertices. A matching in H is a subset M of E, such that every two hyperedges e_1 and e_2 in M have an empty intersection (have no vertex in common).
Specialization (pre)orderIn the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics.
Cardinal régulierEn théorie des ensembles, un cardinal infini est dit régulier s'il est égal à sa cofinalité. Intuitivement, un cardinal est régulier si toute réunion indexée par un ensemble petit d'ensembles petits est petite, où un ensemble est dit petit s'il est de cardinalité strictement inférieure à . Une autre définition possible équivalente est que est régulier si pour tout cardinal , toute fonction est bornée. Un cardinal qui n'est pas régulier est dit singulier.
Completeness (order theory)In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist. The motivation for considering completeness properties derives from the great importance of suprema (least upper bounds, joins, "") and infima (greatest lower bounds, meets, "") to the theory of partial orders.
Closure operatorIn mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets {| border="0" |- | | (cl is extensive), |- | | (cl is increasing), |- | | (cl is idempotent). |} Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families".
Théorie des domainesLa théorie des domaines est une branche des mathématiques dont le principal champ d'application se trouve en informatique théorique. Cette partie de la théorie des ensembles ordonnés a été introduite par Dana Scott pendant les années 1960, afin de fournir le cadre théorique nécessaire à la définition d'une sémantique dénotationnelle du lambda-calcul. Les domaines sont des ensembles partiellement ordonnés.
SemilatticeIn mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
Groupe ordonnéUn groupe ordonné est un groupe muni d'une relation d'ordre respectée par les translations. Soit (G,.) un groupe (la loi du groupe étant notée multiplicativement) et ≤ une relation d'ordre sur G. On dit que celle-ci est compatible avec la loi du groupe lorsque pour tous éléments x, y et z du groupe, la relation x ≤ y entraîne les deux relations zx ≤ zy et xz ≤ yz. Un groupe ordonné est un ensemble muni simultanément d'une loi de groupe et d'une relation d'ordre compatible.
Correspondance de GaloisEn mathématiques, une correspondance de Galois antitone est une généralisation, pour deux ordres partiels quelconques, de la correspondance entre sous-corps d'une extension galoisienne et sous-groupes de son groupe de Galois. Une correspondance de Galois isotone se définit de façon analogue, en inversant l'ordre sur le deuxième ensemble. Cette notion est reliée à celle d'opérateur de clôture. Soient et des fonctions définies sur deux ensembles ordonnés et . On vérifie facilement l'équivalence des deux définitions suivantes.