En mathématiques, une correspondance de Galois antitone est une généralisation, pour deux ordres partiels quelconques, de la correspondance entre sous-corps d'une extension galoisienne et sous-groupes de son groupe de Galois. Une correspondance de Galois isotone se définit de façon analogue, en inversant l'ordre sur le deuxième ensemble. Cette notion est reliée à celle d'opérateur de clôture. Soient et des fonctions définies sur deux ensembles ordonnés et . On vérifie facilement l'équivalence des deux définitions suivantes. Première définition : est une correspondance de Galois antitone si et sont décroissantes et si et sont extensives, c.-à-d. vérifient (pour tout élément p de P et tout élément q de Q) : Deuxième définition : est une correspondance de Galois antitone si et vérifient (pour tout élément p de P et tout élément q de Q) : Avec les mêmes notations que précédemment, une correspondance isotone de vers est, au sens de variation de et près (elles sont maintenant supposées croissantes), une correspondance antitone entre et l'ensemble ordonné , où désigne l'ordre opposé (ou « ordre dual ») de . Autrement dit : Première définition : est une correspondance de Galois isotone si et sont croissantes et si (pour tout élément p de P et tout élément q de Q) : Deuxième définition : est une correspondance de Galois isotone si (pour tout élément p de P et tout élément q de Q) : Soit une correspondance de Galois comme ci-dessus (antitone ou isotone). et sont croissantes. (et ), si bien que et sont idempotentes. est un opérateur de clôture sur (puisqu'elle est de plus extensive). Dans le cas antitone, est de même un opérateur de clôture sur . Réciproquement, tout opérateur de clôture c sur un ensemble ordonné est de la forme pour une certaine correspondance de Galois, en choisissant par exemple pour Q l'image de c (muni de l'ordre induit ou de son opposé, selon qu'on souhaite construire une correspondance isotone ou antitone), pour la corestriction de c à Q, et pour l'injection canonique de Q dans P. Treillis de Galois

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
MATH-317: Algebra V - Galois theory
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-337: Number theory I.c - Combinatorial number theory
This is an introductory course to combinatorial number theory. The main objective of this course is to learn how to use combinatorial, topological, and analytic methods to solve problems in number the
Afficher plus
Séances de cours associées (33)
Anneaux Dedekind: Théorie et applications
Explore les anneaux Dedekind, la fermeture intégrale, la factorisation des idéaux, et Lemma de Gauss.
Construction de bars : Groupes d'homologie et espace de classification
Couvre la méthode de construction des barres, les groupes d'homologie, la classification de l'espace, et la formule Hopf.
Théorie de Galois: La Correspondance de Galois
Explore la correspondance galois et la solvabilité par les radicaux dans les équations polynomiales.
Afficher plus
Publications associées (33)
Concepts associés (18)
Treillis (ensemble ordonné)
En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Order theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Dualité (mathématiques)
thumb|Dual d'un cube : un octaèdre. En mathématiques, le mot dualité a de nombreuses utilisations. Une dualité est définie à l'intérieur d'une famille d'objets mathématiques, c'est-à-dire qu'à tout objet de on associe un autre objet de . On dit que est le dual de et que est le primal de . Si (par = on peut sous-entendre des relations d'isomorphies complexes), on dit que est autodual. Dans de nombreux cas de dualité, le dual du dual est le primal. Ainsi, par exemple, le concept de complémentaire d'un ensemble pourrait être vu comme le premier des concepts de dualité.
Afficher plus