UncertaintyUncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.
Station météorologiqueUne station météorologique, parfois désignée par synecdoque abri météorologique, est un ensemble de capteurs qui enregistrent et fournissent des mesures physiques et des paramètres météorologiques liés aux variations du climat, ces capteurs étant placés dans un boîtier, abri météorologique qui réalise l'équilibre thermique du thermomètre avec l'air et le protège du rayonnement solaire. Les variables à mesurer sont la température, la pression, la vitesse et direction du vent, l'hygrométrie, le point de rosée, la pluviométrie, la hauteur et le type des nuages, le type et l'intensité des précipitations ainsi que la visibilité.
Pluie verglaçanteLa pluie verglaçante est de la pluie qui reste liquide malgré une température inférieure à . Les gouttelettes sont alors en état de surfusion et lorsqu'elles rencontrent un objet, elles gèlent instantanément causant du verglas. Le code METAR pour rapporter de la pluie verglaçante est FZRA. vignette|gauche|Type de précipitations selon la structure thermique (bleu sous zéro degré Celsius et rouge au-dessus). Les précipitations aux latitudes tempérées en période froide naissent en altitude sous forme de neige.
Higher-order statisticsIn statistics, the term higher-order statistics (HOS) refers to functions which use the third or higher power of a sample, as opposed to more conventional techniques of lower-order statistics, which use constant, linear, and quadratic terms (zeroth, first, and second powers). The third and higher moments, as used in the skewness and kurtosis, are examples of HOS, whereas the first and second moments, as used in the arithmetic mean (first), and variance (second) are examples of low-order statistics.
Statistique d'ordreEn statistiques, la statistique d'ordre de rang k d'un échantillon statistique est égal à la k-ième plus petite valeur. Associée aux statistiques de rang, la statistique d'ordre fait partie des outils fondamentaux de la statistique non paramétrique et de l'inférence statistique. Deux cas importants de la statistique d'ordre sont les statistiques du minimum et du maximum, et dans une moindre mesure la médiane de l'échantillon ainsi que les différents quantiles.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Summary statisticsIn descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean a measure of statistical dispersion like the standard mean absolute deviation a measure of the shape of the distribution like skewness or kurtosis if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.
Méthode des moments généraliséeEn statistique et en économétrie, la méthode des moments généralisée (en anglais generalized method of moments ou GMM) est une méthode générique pour estimer les paramètres d'un modèle statistique qui s'appuie sur un certain nombre de conditions sur les moments d'un modèle. Habituellement, cette méthode est utilisée dans un contexte de modèle semi-paramétrique, où le paramètre étudié est de dimension finie, alors que la forme complète de la fonction de distribution des données peut ne pas être connue (de ce fait, l'estimation par maximum de vraisemblance n'est pas applicable).
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Principe d'incertitudeEn mécanique quantique, le principe d'incertitude ou, plus correctement, principe d'indétermination, aussi connu sous le nom de principe d'incertitude de Heisenberg, désigne toute inégalité mathématique affirmant qu'il existe une limite fondamentale à la précision avec laquelle il est possible de connaître simultanément deux propriétés physiques d'une même particule ; ces deux variables dites complémentaires peuvent être sa position (x) et sa quantité de mouvement (p).