Foncteur représentableOn rencontre en mathématiques de nombreuses propriétés universelles. Le formalisme des catégories permet d'exprimer ces propriétés de façon très simple. Soit une catégorie localement petite et F un foncteur contravariant, respectivement covariant, de dans Ens (catégorie des ensembles). On dit que F est représentable s'il existe un objet X de tel que F soit isomorphe au foncteur , respectivement au foncteur . Les transformations naturelles de dans F correspondent bijectivement aux éléments de .
Grothendieck categoryIn mathematics, a Grothendieck category is a certain kind of , introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962. To every algebraic variety one can associate a Grothendieck category , consisting of the quasi-coherent sheaves on .
Diagonal functorIn , a branch of mathematics, the diagonal functor is given by , which maps as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the : a product is a universal arrow from to . The arrow comprises the projection maps. More generally, given a , one may construct the , the objects of which are called . For each object in , there is a constant diagram that maps every object in to and every morphism in to .
Excellent ringIn commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry.
Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
Catégorie des groupes abéliensEn mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens. La catégorie des groupes abéliens est la catégorie Ab définie ainsi : Les objets sont les groupes abéliens ; Les morphismes entre objets sont les morphismes de groupes. C'est donc une sous-catégorie pleine de la catégorie Grp des groupes. La catégorie des groupes abéliens s'identifie à la catégorie des modules sur : La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie.
Chain (algebraic topology)In algebraic topology, a -chain is a formal linear combination of the -cells in a cell complex. In simplicial complexes (respectively, cubical complexes), -chains are combinations of -simplices (respectively, -cubes), but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains. For a simplicial complex , the group of -chains of is given by: where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.
Faisceau injectifEn mathématiques, un faisceau injectif est un d'une catégorie abélienne de faisceaux. Typiquement, dans la catégorie des faisceaux de groupes abéliens sur un espace topologique fixé, un faisceau est dit injectif lorsque, pour tout sous-faisceau d'un faisceau , tout morphisme injectif de dans se prolonge en un morphisme de dans . Autrement dit, le foncteur (contravariant) exact à gauche est exact. On en déduit immédiatement : Pour tout point de , il existe un plongement de la fibre dans un groupe abélien injectif .
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
Mapping cone (homological algebra)In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined and cokernel: if the chain complexes take their terms in an , so that we can talk about cohomology, then the cone of a map f being acyclic means that the map is a quasi-isomorphism; if we pass to the of complexes, this means that f is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism.