Entropie (thermodynamique)L'entropie est une grandeur physique qui caractérise le degré de désorganisation d'un système. Introduite en 1865 par Rudolf Clausius, elle est nommée à partir du grec , littéralement « action de se retourner » pris au sens de « action de se transformer ». En thermodynamique, l'entropie est une fonction d'état extensive (c'est-à-dire, proportionnelle à la quantité de matière dans le système considéré). Elle est généralement notée , et dans le Système international d'unités elle s'exprime en joules par kelvin ().
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Racine de l'erreur quadratique moyenneLa racine de l'erreur quadratique moyenne (REQM) ou racine de l'écart quadratique moyen (en anglais, root-mean-square error ou RMSE, et root-mean-square deviation ou RMSD) est une mesure fréquemment utilisée des différences entre les valeurs (valeurs d'échantillon ou de population) prédites par un modèle ou estimateur et les valeurs observées (ou vraies valeurs). La REQM représente la racine carrée du deuxième moment d'échantillonnage des différences entre les valeurs prédites et les valeurs observées.
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
AC powerIn an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt. The portion of instantaneous power that, averaged over a complete cycle of the AC waveform, results in net transfer of energy in one direction is known as instantaneous active power, and its time average is known as active power or real power.
Facteur de puissanceLe facteur de puissance est une caractéristique d'un récepteur électrique qui rend compte de son efficacité pour consommer de la puissance lorsqu'il est traversé par un courant. Pour un dipôle électrique alimenté en régime de courant variable au cours du temps (sinusoïdal ou non), il est égal à la puissance active P consommée par ce dipôle, divisée par le produit des valeurs efficaces du courant I et de la tension U (puissance apparente S). Il est toujours compris entre 0 et 1.
Entropie différentielleDifferential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP).