Clôture algébriqueEn mathématiques, une clôture algébrique d'un corps commutatif K est une extension algébrique L de K qui est algébriquement close, c'est-à-dire telle que tout polynôme de degré supérieur ou égal à un, à coefficients dans L, admet au moins une racine dans L. Une clôture algébrique d'un corps K peut être vue comme une extension algébrique maximale de K. En effet, il suffit de remarquer que si L est une extension algébrique de K, alors une clôture algébrique de L est également une clôture algébrique de K, donc L est contenu dans une clôture algébrique de K.
Uniform moduleIn abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself. Alfred Goldie used the notion of uniform modules to construct a measure of dimension for modules, now known as the uniform dimension (or Goldie dimension) of a module.
Treillis des sous-groupesthumb|Diagramme de Hasse du treillis des sous-groupes du groupe diédral D. En mathématique, le treillis des sous-groupes d'un groupe G est le treillis constitué des sous-groupes de G, muni de l'inclusion comme relation d'ordre partielle. La borne supérieure de deux sous-groupes a et b est le sous-groupe engendré par l'union de a et b et leur borne inférieure est leur intersection. Le groupe diédral D des huit isométries du carré contient dix sous-groupes, y compris D lui-même et son sous-groupe trivial.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Closed-subgroup theoremIn mathematics, the closed-subgroup theorem (sometimes referred to as Cartan's theorem) is a theorem in the theory of Lie groups. It states that if H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the smooth structure (and hence the group topology) agreeing with the embedding. One of several results known as Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear transformations.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Faisceau (de modules)En mathématique, un faisceau de modules est un faisceau sur un espace localement annelé qui possède une structure de module sur le faisceau structural . Sur un espace localement annelé , un faisceau de -modules (ou un -Module) est un faisceau sur tel que soit un -module pour tout ouvert , et que pour tout ouvert contenu dans , l'application restriction soit compatible avec les structures de modules: pour tous , on a Les notions de sous--modules et de morphismes de -modules sont claires.
Extension algébriqueEn mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est-à-dire sont racines d'un polynôme non nul à coefficients dans K. Dans le cas contraire, l'extension est dite transcendante. Cette approche permet dans un premier temps de pallier les insuffisances de certains corps, par exemple celui des nombres réels quant aux solutions des équations polynomiales.
Cartan subalgebraIn mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising (if for all , then ). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., ), a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements x such that the adjoint endomorphism is semisimple (i.
Nombre algébriqueUn nombre algébrique, en mathématiques, est un nombre complexe solution d'une équation polynomiale à coefficients dans le corps des rationnels (autrement dit racine d'un polynôme non nul à coefficients rationnels). Les nombres entiers et rationnels sont algébriques, ainsi que toutes les racines de ces nombres. Les nombres complexes qui ne sont pas algébriques, comme π et e (théorème de Lindemann-Weierstrass), sont dits transcendants. L'étude de ces nombres, de leurs polynômes minimaux et des corps qui les contiennent fait partie de la théorie de Galois.