K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Réseau (sous-groupe discret)En théorie des groupes le terme réseau désigne un sous-groupe d'un groupe topologique localement compact vérifiant les conditions suivantes : est discret dans , ce qui est équivalent à la condition qu'il existe un voisinage ouvert de l'identité de tel que ; est de covolume fini dans , c'est-à-dire qu'il existe sur l'espace quotient une mesure Borélienne de masse totale finie et invariante par (agissant par translations à droite). Un réseau est dit uniforme quand le quotient est compact. On dit alors que est un réseau de .
Geometric quotientIn algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties such that (i) For each y in Y, the fiber is an orbit of G. (ii) The topology of Y is the quotient topology: a subset is open if and only if is open. (iii) For any open subset , is an isomorphism. (Here, k is the base field.) The notion appears in geometric invariant theory. (i), (ii) say that Y is an orbit space of X in topology. (iii) may also be phrased as an isomorphism of sheaves .
CentralisateurEn mathématiques, et plus précisément en théorie des groupes, le centralisateur d'une partie X d'un groupe G est le sous-groupe de G formé par les éléments de G qui commutent avec tout élément de X. Soient G un groupe et x un élément de G. Le centralisateur de x dans G, noté CG(x) (ou C(x) si le contexte n'est pas ambigu) est, par définition, l'ensemble des éléments de G qui commutent avec x. Cet ensemble est un sous-groupe de G.