Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Linear canonical transformationIn Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Problème de couverture par ensemblesEn informatique théorique, le problème de couverture par ensembles (Set Cover problem en anglais) est un problème d'algorithmique particulièrement important car c'est l'un des 21 problèmes NP-complets de Karp . Étant donné un ensemble A, on dit qu'un élément e est couvert par A si e appartient à A. Étant donné un ensemble U et une famille S de sous-ensembles de U, le problème consiste à couvrir tous les éléments U avec une sous-famille de S la plus petite possible.
Algorithme de Primthumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.