Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
Processus ponctuelEn probabilité et statistique, un processus ponctuel est un type particulier de processus stochastique pour lequel une réalisation est un ensemble de points isolés du temps et/ou de l'espace. Par exemple, la position des arbres dans une forêt peut être modélisée comme la réalisation d'un processus ponctuel. Les processus ponctuels sont des objets très étudiés en probabilité et en statistique pour représenter et analyser des données spatialisées qui interviennent dans une multitude de domaines telle que l'écologie, l'astronomie, l'épidémiologie, la géographie, la sismologie, les télécommunications, la science des matériaux et beaucoup d'autres.
Processus de CoxUn processus de Cox (nommé d'après le statisticien britannique David Cox), connu aussi sous le nom de double processus stochastique de Poisson, est un processus stochastique généralisant le processus de Poisson dans lequel la moyenne n'est pas constante mais varie dans l'espace ou le temps. Dans le cadre du processus de Cox, l'intensité dépendant du temps est un processus stochastique séparé du processus de Poisson. Un exemple serait un potentiel d'action (appelé aussi influx nerveux) d'un neurone sensoriel avec une stimulation externe.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Statistical theoryThe theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.
Croissance démographiqueLa croissance démographique ou accroissement démographique ou variation totale de population est la différence entre l’effectif d’une population à la fin et au début d’une période donnée (généralement un an). Elle peut être exprimée par le taux d'évolution du nombre d’individus au sein d’une population par unité de temps et pour aussi n’importe quelle espèce (animale ou végétale, par exemple). Elle se décompose en deux parties distinctes : l’accroissement naturel ; le solde migratoire.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Population mondialeLa population mondiale est le nombre d'êtres humains vivant sur Terre à un instant donné. L’ONU l'estime à le . Elle avait été estimée à pour 2000, entre 1,55 et pour 1900, entre 0,813 et pour 1800 et entre 600 et d'habitants pour 1700. Cette augmentation de la population avec le temps tend cependant à ralentir avec une baisse mondiale de l'indice de fécondité, plus ou moins importante selon les pays. Le taux annuel de la croissance démographique de la population mondiale est tombé de 2,1 % au début des années 1960 à moins de 1 % en 2020.
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.