Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Problème de l'isomorphisme de sous-graphesvignette|Le problème est de savoir si un graphe contient un autre graphe comme sous-graphe. En informatique théorique, le problème de l'isomorphisme de sous-graphes est le problème de décision suivant : étant donnés deux graphes G et H, déterminer si G contient un sous-graphe isomorphe à H. C'est une généralisation du problème de l'isomorphisme de graphes. Soient et deux graphes. Le problème de décision de l'isomorphisme de sous-graphe est : « Est-ce qu'il existe un sous-graphe , avec et , tel qu'il existe une bijection telle que ? ».
Kuratowski's theoremIn graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
Graphe aléatoirevignette|Graphe orienté aléatoire avec 20 nœuds et une probabilité de présence d'arête égale à 0,1. En mathématiques, un graphe aléatoire est un graphe généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdős et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968. Il y a deux modèles d'Erdős et Rényi, formellement différents, mais étroitement liés : le graphe aléatoire binomial et le graphe aléatoire uniforme.
Graphe à distance héréditairevignette| Exemple d'un graphe à distance héréditaire. En théorie des graphes, un graphe à distance héréditaire (aussi appelé graphe complètement séparable) est un graphe dans lequel les distances entre sommets dans tout sous-graphe induit connexe sont les mêmes que celles du graphe tout entier ; autrement dit, tout sous-graphe induit hérite les distances du graphe entier. Les graphes à distance héréditaire ont été nommés et étudiés pour la première fois par Howorka en 1977, alors qu'une classe équivalente de graphes a déjà été considérée en 1970 par Olaru et Sachs qui ont montré que ce sont des graphes parfaits.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Nœud (astronomie)400px|droite|vignette|Nœuds d'un satellite artificiel placé en orbite autour de la Terre. En mécanique céleste et en mécanique spatiale, un nœud (du latin nodus) ou point nodal est un des deux points d'intersection d'une orbite inclinée avec le plan principal du système de référence. Le nœud ascendant est le point par lequel le corps en orbite (planète, naturel, artificiel ou autre objet céleste en orbite) traverse le plan de référence du sud vers le nord ; le nœud descendant est celui par lequel il le traverse du nord vers le sud.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Studentized residualIn statistics, a studentized residual is the quotient resulting from the division of a residual by an estimate of its standard deviation. It is a form of a Student's t-statistic, with the estimate of error varying between points. This is an important technique in the detection of outliers. It is among several named in honor of William Sealey Gosset, who wrote under the pseudonym Student. Dividing a statistic by a sample standard deviation is called studentizing, in analogy with standardizing and normalizing.