Jeu à somme nulleUn jeu de somme nulle est un jeu où la somme des gains et des pertes de tous les joueurs est égale à 0. Cela signifie donc que le gain de l'un constitue obligatoirement une perte pour l'autre. Par exemple si l'on définit le gain d'une partie d'échecs comme 1 si on gagne, 0 si la partie est nulle et -1 si on perd, le jeu d'échecs est un jeu à somme nulle. En économie, cette notion simplificatrice est importante : les jeux à somme nulle correspondent à l'absence de production ou de destruction de produits.
DébruitageLe débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
Bruit de mesureEn métrologie, le bruit de mesure est l'ensemble des signaux parasites qui se superposent au signal que l'on cherche à obtenir au moyen d'une mesure d'un phénomène physique. Ces signaux sont une gêne pour la compréhension de l'information que le signal transporte. La métrologie vise donc notamment à connaître leurs origines et à les caractériser, afin de les éliminer et d'obtenir le signal d'origine aussi distinctement que possible. La source du bruit d'origine externe est externe au système physique générant le signal utile et agit par influence sur celui-ci.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Bruit roseLe bruit rose est un signal aléatoire dont la densité spectrale est constante par bande d'octave. Sa densité spectrale de puissance est inversement proportionnelle à la fréquence du signal. Tandis que le bruit blanc a une énergie spectrale constante sur l'intégralité de l'échelle des fréquences, soit par hertz, le bruit rose possède lui une énergie constante par bande d'octave. Par exemple, avec le bruit rose, la bande d'octave s'étalant de 500 à 1000 hertz contient la même énergie que celle s'étalant de 4000 à 8000 hertz.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.