Opérateur elliptiqueEn mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus.
M-estimateurvignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.
Marge d'erreurEn statistiques, la marge d'erreur est une estimation de l'étendue que les résultats d'un sondage peuvent avoir si l'on recommence l'enquête. Plus la marge d'erreur est importante, moins les résultats sont fiables et plus la probabilité qu'ils soient écartés de la réalité est importante. La marge d'erreur peut être calculée directement à partir de la taille de l'échantillon (par exemple, le nombre de personnes sondées) et est habituellement reportée par l'un des trois différents niveaux de l'intervalle de confiance.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation de PoissonEn analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées partielles elliptique du second ordre suivante : où est l'opérateur laplacien et est une distribution généralement donnée. Sur un domaine borné de et de frontière régulière, le problème de trouver à partir de et satisfaisant certaines conditions aux limites appropriées est un problème bien posé : la solution existe et est unique.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Déformation élastiqueEn physique, l'élasticité est la propriété d'un matériau solide à retrouver sa forme d'origine après avoir été déformé. La déformation élastique est une déformation réversible. Un matériau solide se déforme lorsque des forces lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand ces forces ne s'exercent plus, jusqu'à une certaine limite de la valeur de ces forces. Les tissus biologiques sont également plus ou moins élastiques. Les raisons physiques du comportement élastique diffèrent d'un matériau à un autre.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.