Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Radioactivité βLa radioactivité β, radioactivité bêta ou émission bêta (symbole β) est, à l'origine, un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positon) est émise. On parle de désintégration bêta moins (β) ou bêta plus (β) selon qu'il s'agit de l'émission d'un électron (particule chargée négativement) ou d'un positon (particule chargée positivement). L'émission β est notamment ce qui permet la conversion d'un neutron en proton, par exemple dans les cas de transmutation comme du tritium (T) qui se transforme en hélium 3 (He) : ⟶ + e + .
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Auto-encodeurUn auto-encodeur (autoencodeur), ou auto-associateur est un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
Radioactivitévignette|Pictogramme signalant la présence de matière radioactive. (☢) vignette|La maison de Georges Cuvier, au Jardin des plantes de Paris, où Henri Becquerel découvrit la radioactivité en 1896. La radioactivité est le phénomène physique par lequel des noyaux atomiques instables (dits radionucléides ou radioisotopes) se transforment spontanément en d'autres atomes (désintégration) en émettant simultanément des particules de matière (électrons, noyaux d'hélium, neutrons) et de l'énergie (photons et énergie cinétique).
Réseau de neurones de HopfieldLe réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert.
Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
DeepDreamthumb|250px| Photographie avant et après un traitement partiel par DeepDream. thumb| Étape avancée du traitement d'une photographie de trois hommes. DeepDream est un programme de vision par ordinateur créé par Google qui utilise un réseau neuronal convolutif pour trouver et renforcer des structures dans des images en utilisant des paréidolies créées par algorithme, donnant ainsi une apparence hallucinogène à ces images. thumb|left|Photographie de ciel nuageux ; à droite, sa transformation par DeepDream.
Décroissance exponentiellethumb|La décharge d'un condensateur est à décroissance exponentielle. La décroissance exponentielle d'une quantité est sa diminution au fil du temps selon une loi exponentielle. On l'observe quand la dérivée par rapport au temps de cette quantité (c'est-à-dire son taux de variation instantané) est négative et proportionnelle à la quantité elle-même. Dans la langue courante on emploie souvent, mais improprement, le terme « décroissance exponentielle » pour qualifier une diminution simplement décélérée, quand la valeur absolue de la dérivée est elle-même décroissante.
Radioactivité αLa radioactivité alpha (ou rayonnement alpha, symbolisé α) est le rayonnement provoqué par la désintégration alpha, soit la forme de désintégration radioactive où un noyau atomique X éjecte une et se transforme en un noyau Y de nombre de masse A diminué de 4 et de numéro atomique Z diminué de 2. En 1898, Ernest Rutherford découvre que la radioactivité émise par un minerai d'uranium est un mélange de deux phénomènes distincts qu'il appelle radioactivité α et radioactivité β.