Value at riskLa VaR (de l'anglais value at risk, mot à mot : « valeur à risque », ou « valeur en jeu ») est une notion utilisée généralement pour mesurer le risque de marché d'un portefeuille d'instruments financiers. Elle correspond au montant de pertes qui ne devrait être dépassé qu'avec une probabilité donnée sur un horizon temporel donné. L'utilisation de la VaR n'est désormais plus limitée aux instruments financiers : on peut en faire un outil de gestion des risques dans tous les domaines (, par exemple).
Rupture de barragevignette|Le réservoir du barrage Teton se déversant lors de sa rupture en 1976 aux États-Unis. Une rupture de barrage se produit lorsque la structure cède du fait d'événements naturels (séisme, mouvement de terrain, crue, etc.) ou de défaillances humaines (mauvaise conception, négligence, sabotage, etc). Cette rupture a pour conséquence le déversement non contrôlé de l'eau ou de la boue contenues par le barrage. Ce type de catastrophe reste peu fréquent mais chaque occurrence engendre de graves conséquences humaines, environnementales et techniques.
Complex random variableIn probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.
Exchangeable random variablesIn statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence X1, X2, X3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. Thus, for example the sequences both have the same joint probability distribution. It is closely related to the use of independent and identically distributed random variables in statistical models.
Barrage de St. FrancisLe barrage de St. Francis était un barrage dont le réservoir alimentait l'aqueduc de Los Angeles en Californie. Il fut construit entre 1924 et 1926 à quelques kilomètres de l'actuelle ville de Santa Clarita. Lors de son premier remplissage, le , le barrage s'est effondré et a entrainé l'inondation du San Francisquito Canyon qui a couté la vie à près de . C'est la plus grave erreur de génie civil survenue aux États-Unis, et la deuxième plus grave catastrophe dans l'histoire de la Californie, après le séisme de 1906 à San Francisco.
Multivariate t-distributionIn statistics, the multivariate t-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
Vecteur aléatoireUn vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...
Risk matrixA risk matrix is a matrix that is used during risk assessment to define the level of risk by considering the category of probability or likelihood against the category of consequence severity. This is a simple mechanism to increase visibility of risks and assist management decision making. Risk is the lack of certainty about the outcome of making a particular choice. Statistically, the level of downside risk can be calculated as the product of the probability that harm occurs (e.g.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.