Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Mesure physiqueLa mesure physique est l'action de déterminer la ou les valeurs d'une grandeur (longueur, capacité), par comparaison avec une grandeur constante de même espèce prise comme terme de référence (étalon ou unité). Selon la définition canonique : La mesure physique vise à l'objectivité et à la reproductibilité. La comparaison est numérique ; on exprime une caractéristique bien définie de l'objet par un nombre rationnel multipliant l'unité.
RéfutabilitéLa réfutabilité (également désignée par le recours à l'anglicisme falsifiabilité) a été introduite par Karl Popper et est considérée comme un concept important de l'épistémologie, permettant d'établir une démarcation entre les théories scientifiques et celles qui ne le sont pas. Une affirmation, une hypothèse, est dite réfutable si et seulement si elle peut être logiquement contredite par un test empirique ou, plus précisément, si et seulement si un énoncé d'observation (vrai ou faux) ayant une interprétation empirique (respectant ou non les lois actuelles et à venir) contredit logiquement la théorie.
Corrélation croiséeLa corrélation croisée est parfois utilisée en statistique pour désigner la covariance des vecteurs aléatoires X et Y, afin de distinguer ce concept de la « covariance » d'un vecteur aléatoire, laquelle est comprise comme étant la matrice de covariance des coordonnées du vecteur. En traitement du signal, la corrélation croisée (aussi appelée covariance croisée) est la mesure de la similitude entre deux signaux.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
MéthodologieLa méthodologie est l'étude de l'ensemble des méthodes scientifiques. Elle peut être considérée comme la science de la méthode, ou « méthode des méthodes » (comme il y a une métalinguistique ou linguistique des linguistiques et une métamathématique ou mathématique des mathématiques). Alors, la méthodologie est une classe de méthodes, une sorte de boîte à outils où chaque outil est une méthode de la même catégorie, comme il y a une méthodologie analytique du déterminisme causal et une méthodologie systémique finaliste de la téléologie.
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.