Classe de ChernEn mathématiques, les classes de Chern sont des classes caractéristiques associées aux fibrés vectoriels. Elles tiennent leur nom du mathématicien sino-américain Shiing-Shen Chern, qui les a introduites en 1946 dans le cas complexe. Les classes de Chern ont des applications importantes en mathématiques, notamment en topologie et géométrie algébriques, et en physique dans l'étude des théories de Yang-Mills et des champs quantiques. Distinguer deux fibrés vectoriels sur une variété lisse est en général un problème difficile.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Classe d'EulerEn topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.
Morphisme de groupesUn morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure de groupe. Plus précisément, c'est un morphisme de magmas d'un groupe dans un groupe , c'est-à-dire une application telle que et l'on en déduit alors que f(e) = e (où e et e désignent les neutres respectifs de G et G) et ∀x ∈ G f(x) = [f(x)]. donc ; en composant par l'inverse de , on obtient (autrement dit, un morphisme de groupes conserve l'idempotence, et l'élément neutre d'un groupe est son unique élément idempotent).
Catégorie des groupes abéliensEn mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens. La catégorie des groupes abéliens est la catégorie Ab définie ainsi : Les objets sont les groupes abéliens ; Les morphismes entre objets sont les morphismes de groupes. C'est donc une sous-catégorie pleine de la catégorie Grp des groupes. La catégorie des groupes abéliens s'identifie à la catégorie des modules sur : La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.
Foncteur exactEn mathématiques, un foncteur exact est un foncteur qui commute aux limites inductives et projectives. De manière équivalente, c'est un foncteur qui préserve les suites exactes de catégories abéliennes et c'est de cela que vient la dénomination. Des foncteurs de ce type apparaissent naturellement en homologie et d'une manière générale en théorie des catégories, où leurs propriétés permettent des calculs élégants. Le « défaut d'exactitude » est mesuré par les foncteurs dérivés, par exemple les foncteurs Tor et Ext.