Équation d'Einsteinvignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Gradientvignette|Chaque champ scalaire est représenté par un dégradé (blanc = valeur basse, noir = valeur haute). Chaque gradient est un champ vectoriel, représenté par des flèches bleues ; chacune pointe dans la direction où le champ scalaire croît le plus vite. vignette|La fonction à deux variables f(x, y) = xe−(x2 + y2) correspond à la température (bleu = valeur basse = froid, rouge = valeur haute = chaud). Le gradient de f est un champ vectoriel, représenté par les flèches bleues ; chacune pointe dans la direction où la température croît le plus vite.
Approximation des champs faiblesL'approximation des champs faibles en relativité générale est utilisée pour décrire les champs gravitationnels loin de la source de la gravité. Elle permet de retrouver les lois de la gravitation de Newton. Dans cette approximation, on suppose qu'on peut écrire la métrique de l'espace-temps () sous la forme où est la métrique de Minkowski, est la déviation (faible) par rapport à cette dernière et une constante réelle non nulle.
Équation linéaireUne équation à coefficients réels ou complexes est dite linéaire quand elle peut être présentée sous la forme ax = b ou, de manière équivalente ax – b = 0, où x est l'inconnue, a et b sont deux nombres donnés. Si a est différent de zéro, la seule solution est le nombre x = b/a. Plus généralement, une équation est dite linéaire lorsqu'elle se présente sous la forme u(x) = b, où u est une application linéaire entre deux espaces vectoriels E et F, b étant un vecteur donné de F. On recherche l'inconnue x dans E.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).