Théorème d'inversion localeEn mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.
Principe des puissances virtuellesLe principe des puissances virtuelles ou PPV est un principe fondamental en mécanique, qui postule un équilibre de puissance dans un mouvement virtuel, il s'agit d'une formulation duale du principe fondamental de la dynamique ou PFD. Il permet de retrouver certains principes ou théorèmes comme le principe fondamental de la dynamique et le théorème de l'énergie cinétique, et constitue aussi la base d'une démarche de modélisation pour les milieux continus (théorie du premier gradient, théorie du second gradient).
Cercle de MohrLe cercle de Mohr est une représentation graphique des états de contrainte à deux dimensions, proposée par Christian Otto Mohr en 1882. Dans un graphique où l'axe horizontal représente l'amplitude de la contrainte normale et l'axe vertical représente l'amplitude de la contrainte de cisaillement, le cercle de Mohr est le lieu des états de contrainte en un point P lorsque le plan de coupe tourne autour du point P. Il s'agit d'un cercle centré sur l'axe horizontal dont les intersections avec l'axe horizontal correspondent aux deux contraintes principales au point P.
Line elementIn geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by . Line elements are used in physics, especially in theories of gravitation (most notably general relativity) where spacetime is modelled as a curved Pseudo-Riemannian manifold with an appropriate metric tensor.
Fonction partiellevignette|Exemple d'une fonction partielle En mathématiques, une fonction partielle (quelquefois appelée simplement fonction) sur un ensemble donné E est une application définie sur une partie de celui-ci, appelé ensemble de définition (ou domaine de définition) de la fonction partielle.
Restriction (mathématiques)thumb|La fonction x2 n'admet pas de réciproque sur la droite réelle. Il faut restreindre sur les réels positifs pour pouvoir définir la racine carrée . En mathématiques, la restriction d'une fonction f est une fonction, souvent notée f ou , pour laquelle on ne considère que les valeurs prises par f sur un domaine A inclus dans le domaine de définition de f. Soit f : E → F une fonction sur un ensemble E vers un ensemble F.