Ligne de niveauSoit f une fonction à valeurs réelles, une ligne de niveau est un ensemble { (x1,...,xn) | f(x1,...,xn) = c } ; c étant une constante. C'est en fait le sous-ensemble de l'ensemble de définition sur lequel f prend une valeur donnée. Théorème : le gradient de f est perpendiculaire en tout point à la ligne de niveau de f en ce point. Il s'agit d'un résultat important. Pour mieux le comprendre, imaginons que deux randonneurs sont à la même position sur une montagne.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Ricci-flat manifoldIn the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat.
Application non expansiveEn mathématiques, une application non expansive entre espaces normés est une application 1-lipschitzienne. Il s'agit donc du cas limite des applications contractantes, qui sont les applications k-lipschitziennes pour un k < 1. Contrairement aux applications contractantes, les applications non expansives n'ont pas nécessairement de point fixe (par exemple, une translation de vecteur non nul est non expansive et n'a pas de point fixe).