Résidu (analyse complexe)En analyse complexe, le résidu est un nombre complexe qui décrit le comportement de l'intégrale curviligne d'une fonction holomorphe aux alentours d'une singularité. Les résidus se calculent assez facilement et, une fois connus, permettent de calculer des intégrales curvilignes plus compliquées grâce au théorème des résidus. Le terme résidu vient de Cauchy dans ses Exercices de mathématiques publié en 1826. Soit un ouvert de , un ensemble dans D de points isolés et une fonction holomorphe.
Numerical cognitionNumerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
One-sided limitIn calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right. The limit as decreases in value approaching ( approaches "from the right" or "from above") can be denoted: The limit as increases in value approaching ( approaches "from the left" or "from below") can be denoted: If the limit of as approaches exists then the limits from the left and from the right both exist and are equal.
Peigne de Diracvignette|La distribution peigne de Dirac est une série infinie de distributions de Dirac espacées de T.|208x208pxEn mathématiques, la distribution peigne de Dirac, ou distribution cha (d'après la lettre cyrillique Ш), est une somme de distributions de Dirac espacées de T : Cette distribution périodique est particulièrement utile dans les problèmes d'échantillonnage, remplacement d'une fonction continue par une suite de valeurs de la fonction séparées par un pas de temps T (voir Théorème d'échantillonnage de Nyquist-Shannon).
Complétion (algèbre)En algèbre, une complétion est l'un des foncteurs sur les anneaux et les modules qui produit des anneaux topologiques et modules topologiques complets. La complétion est similaire à la localisation et, ensemble, ce sont des outils de base pour étudier les anneaux commutatifs. Les anneaux commutatifs complets ont une structure plus simple que les anneaux généraux, et on peut y appliquer le lemme de Hensel.
Noyau de FejérEn mathématiques, et plus précisément en analyse fonctionnelle et harmonique, le noyau de Fejér est une suite de fonctions réelles 2π-périodiques permettant d'exprimer l'effet d'une somme de Cesàro sur une série de Fourier. Il tient son nom du mathématicien hongrois Lipót Fejér.
Série formelleEn algèbre, les séries formelles sont une généralisation des polynômes autorisant des sommes infinies, de la même façon qu'en analyse, les séries entières généralisent les fonctions polynomiales, à ceci près que dans le cadre algébrique, les problèmes de convergence sont évités par des définitions ad hoc. Ces objets sont utiles pour décrire de façon concise des suites et pour trouver des formules pour des suites définies par récurrence via ce que l'on appelle les séries génératrices. Soit R un anneau commutatif (unifère).