Section efficaceEn physique nucléaire ou en physique des particules, la section efficace est une grandeur physique reliée à la probabilité d'interaction d'une particule pour une réaction donnée. La section efficace étant homogène à une surface, l'unité de section efficace du Système international est le mètre carré. En pratique on utilise souvent le barn, de symbole b : = = , soit la surface d'un carré de dix femtomètres de côté (du même ordre de grandeur que le diamètre d'un noyau atomique).
Mathematical formulation of the Standard ModelThis article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Violation de CPEn physique des particules, la violation de CP est une violation de la symétrie CP, c'est-à-dire de la combinaison de la symétrie C (symétrie de conjugaison de charge) et de la symétrie P (symétrie de parité). La symétrie CP indique que les lois de la physique devraient être les mêmes si une particule est échangée avec son antiparticule (symétrie C) tandis que ses coordonnées spatiales sont inversées (symétrie P, ou « miroir »).
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
CMS (expérience)L'expérience CMS (du nom du détecteur Compact Muon Solenoid, en français « solénoïde compact à muons ») est une des expériences de physique des particules du Grand collisionneur de hadrons (LHC) du CERN. Le détecteur CMS est situé dans une caverne souterraine à Cessy au point 5, en France, près de la frontière avec la Suisse. Il a été construit et est exploité par environ de presque , appartenant à scientifiques. Le détecteur a une forme cylindrique de de long et de diamètre, et pèse .
Théorie des cordesEn physique fondamentale, la théorie des cordes est un cadre théorique dans lequel les particules ponctuelles de la physique des particules sont représentées par des objets unidimensionnels appelés cordes. La théorie décrit comment ces cordes se propagent dans l'espace et interagissent les unes avec les autres. Sur des échelles de distance supérieures à l'échelle de la corde, cette dernière ressemble à une particule ordinaire, avec ses propriétés de masse, de charge et autres, déterminées par l'état vibratoire de la corde.
PhotonLe photon est le quantum d'énergie associé aux ondes électromagnétiques (allant des ondes radio aux rayons gamma en passant par la lumière visible), qui présente certaines caractéristiques de particule élémentaire. En théorie quantique des champs, le photon est la particule médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d’un point de vue quantique comme un échange de photons.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.