DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
NeutronLe neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope. Les neutrons liés dans un noyau atomique sont en général stables mais les neutrons libres sont instables : ils se désintègrent en un peu moins de 15 minutes (880,3 secondes). Les neutrons libres sont produits dans les opérations de fission et de fusion nucléaires.
LuminositéEn astronomie, la luminosité est la quantité totale d'énergie émise par unité de temps (le flux énergétique), par une étoile, une galaxie, ou n'importe quel autre objet céleste. Elle s'exprime en pratique en luminosité solaire ( = ). Le flux lumineux, qui mesure plus particulièrement l'émission en lumière visible, peut également s'exprimer sur une échelle logarithmique par la magnitude absolue. En astronomie, elle représente la quantité totale d'énergie rayonnée (dans le domaine de l'électromagnétisme) par unité de temps par un astre.
Modèle standard de la physique des particulesvignette|upright=2.0|Modèle standard des particules élémentaires avec les trois générations de fermions (trois premières colonnes), les bosons de jauge (quatrième colonne) et le boson de Higgs (cinquième colonne). Le modèle standard de la physique des particules est une théorie qui concerne l'électromagnétisme, les interactions nucléaires faible et forte, et la classification de toutes les particules subatomiques connues. Elle a été développée pendant la deuxième moitié du , dans une initiative collaborative mondiale, sur les bases de la mécanique quantique.
Radioactivité βLa radioactivité β, radioactivité bêta ou émission bêta (symbole β) est, à l'origine, un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positon) est émise. On parle de désintégration bêta moins (β) ou bêta plus (β) selon qu'il s'agit de l'émission d'un électron (particule chargée négativement) ou d'un positon (particule chargée positivement). L'émission β est notamment ce qui permet la conversion d'un neutron en proton, par exemple dans les cas de transmutation comme du tritium (T) qui se transforme en hélium 3 (He) : ⟶ + e + .
Création de pairesUne création de paires est la création d’un couple particule-antiparticule à partir d’un photon (ou d’un autre boson de charge neutre) ou d’une particule chargée se déplaçant à une vitesse relativiste. La production fait référence à la création d’une particule élémentaire et de son antiparticule, le plus souvent à partir d’un photon (ou un autre boson neutre). Cela est permis dès lors qu’il y a suffisamment d’énergie disponible dans le centre de masse pour créer la paire — au moins l’énergie de masse au repos totale des deux particules — et que la situation permet la conservation de l’énergie et de la quantité de mouvement.
Tau neutrinoThe tau neutrino or tauon neutrino is an elementary particle which has the symbol _Tauon neutrino and zero electric charge. Together with the tau (τ), it forms the third generation of leptons, hence the name tau neutrino. Its existence was immediately implied after the tau particle was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his colleagues at the SLAC–LBL group. The discovery of the tau neutrino was announced in July 2000 by the DONUT collaboration (Direct Observation of the Nu Tau).
Muon neutrinoThe muon neutrino is an elementary particle which has the symbol _Muon neutrino and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics. The muon neutrino or "neutretto" was hypothesized to exist by a number of physicists in the 1940s. The first paper on it may be Shoichi Sakata and Takesi Inoue's two-meson theory of 1942, which also involved two neutrinos.
Quark étrangeLe quark étrange (souvent appelé quark strange en empruntant la terminologie anglophone, et également nommé quark s) est un quark, une particule élémentaire du modèle standard de la physique des particules. L’UIPPA définit le symbole s comme son nom officiel, désignant strange comme une appellation d’intérêt mnémotechnique. Avec le quark charm, il fait partie des quarks de deuxième génération. Comme tous les quarks de charge négative, sa charge électrique est de −1/3 e (celle des quarks électropositifs est de +2/3 e).
Réactions nucléaires avec des ions lourdsLes réactions nucléaires avec des noyaux lourds (ou avec des ions lourds) sont des réactions provoquées par la collision de deux noyaux atomiques accélérés, soit naturellement comme les rayons cosmiques ou lors de la nucléosynthèse stellaire, soit artificiellement par des accélérateurs. On les distingue des réactions avec des particules légères (photons, protons, neutrons ou particule α) ; les noyaux du faisceau vont du plus léger comme le lithium (nombre de nucléons 6) aux plus lourds comme l'uranium ( 238).