AxiomeUn axiome (en ἀξίωμα /axioma, « principe servant de base à une démonstration, principe évident en soi » – lui-même dérivé de άξιόω (axioô), « juger convenable, croire juste ») est une proposition non démontrée, utilisée comme fondement d’un raisonnement ou d’une théorie mathématique. Pour Euclide et certains philosophes grecs de l’Antiquité, un axiome était une affirmation qu'ils considéraient comme évidente et qui n'avait nul besoin de démonstration.
Instrument de musiqueright|thumb|280px|Fresque étrusque de la tombe des Léopards à Monterozzi en Italie. right|thumb|280px|Planche illustrée d'instruments de musique extraite du "Systematische Bilder-Gallerie zur allgemeinen deutschen Real Encyclopädie in lithographirten Blättern" (1842) Un instrument de musique est un objet pouvant produire un son contrôlé par un musicien — que cet objet soit conçu dans cet objectif, ou bien qu'il soit modifié ou écarté de son usage premier.
Set theory (music)Musical set theory provides concepts for categorizing musical objects and describing their relationships. Howard Hanson first elaborated many of the concepts for analyzing tonal music. Other theorists, such as Allen Forte, further developed the theory for analyzing atonal music, drawing on the twelve-tone theory of Milton Babbitt. The concepts of musical set theory are very general and can be applied to tonal and atonal styles in any equal temperament tuning system, and to some extent more generally than that.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
ThéorieUne théorie (du grec theoria, « contempler, observer, examiner ») est un ensemble cohérent, si elle prétend à la scientificité, d'explications, de notions ou d'idées sur un sujet précis, pouvant inclure des lois et des hypothèses, induites par l'accumulation de faits provenant de l'observation, l'expérimentation ou, dans le cas des mathématiques, déduites d'une base axiomatique donnée : théorie des matrices, des torseurs, des probabilités.
Échelle diatoniqueL'échelle diatonique, ou gamme diatonique, est une échelle musicale heptatonique (qui contient 7 degrés), composée de 5 tons et 2 demi-tons. Les deux demi-tons sont toujours séparés par 2 ou 3 tons. Cette échelle est à l'origine de la musique savante occidentale. Chaque degré porte un nom, l'ensemble se répétant de manière cyclique, soit du grave vers l'aigu : do, ré, mi, fa, sol, la, si et à nouveau do... En divisant tous les tons en demi-tons (chaque degré peut être « altéré » : abaissé ou élevé d'un demi-ton), on obtient une échelle chromatique.
Paradoxes of set theoryThis article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory. Set theory as conceived by Georg Cantor assumes the existence of infinite sets. As this assumption cannot be proved from first principles it has been introduced into axiomatic set theory by the axiom of infinity, which asserts the existence of the set N of natural numbers.
Minor scaleIn music theory, the minor scale is three scale patterns – the natural minor scale (or Aeolian mode), the harmonic minor scale, and the melodic minor scale (ascending or descending) – mirroring the major scale, with its harmonic and melodic forms In each of these scales, the first, third, and fifth scale degrees form a minor triad (rather than a major triad, as in a major scale). In some contexts, minor scale is used to refer to any heptatonic scale with this property (see Related modes below).
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
Théorie MLa théorie M est une théorie physique devant unifier les différentes versions de la théorie des supercordes. L'existence de cette théorie fut conjecturée par Edward Witten en 1995, lors d'un colloque sur la théorie des cordes à l'Université de Californie du Sud. Cette annonce engendra un tourbillon de nouvelles recherches, qu'on a appelé la . Selon Witten le M de théorie M peut signifier magie, mystère ou membrane au choix, et le véritable sens ne s'imposera que quand la théorie sera formulée définitivement.