Théorie des supercordesthumb|Vue d'artiste de la théorie des supercordes. La théorie des supercordes est une tentative pour expliquer l'existence de toutes les particules et forces fondamentales de la nature, en les modélisant comme les vibrations de minuscules cordes supersymétriques. Au début du , elle est considérée comme la plus féconde des théories pour une gravité quantique, même si elle souffre des mêmes défauts que la théorie des cordes en raison de l'impossibilité de la vérifier par l'expérimentation.
Comédie musicalethumb|350px|The Black Crook (1866) est considéré comme la première comédie musicale.La comédie musicale est un genre théâtral, mêlant comédie, chant, danse et claquettes. Apparue au tout début du , elle se situe dans la lignée du mariage du théâtre et de la musique classique qui avait donné naissance aux siècles précédents au ballet, à l'opéra, à l'opéra-bouffe et à l'opérette. Elle s'est particulièrement développée aux États-Unis, se dissociant à partir des années 1910 du genre classique par l'intégration de musiques « nouvelles » comme le jazz.
Sémantique formelleEn linguistique, la sémantique formelle cherche à comprendre le sens (linguistique) en construisant des modèles mathématiques précis des principes utilisés par le locuteur pour définir la relation entre des expressions en langage naturel et l’environnement supportant un discours faisant sens. Les outils mathématiques utilisés sont une combinaison de logique mathématique et de langage formel théorique, plus particulièrement de lambda-calcul typé.
Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Interprétation (logique)En logique, une interprétation est une attribution de sens aux symboles d'un langage formel. Les langages formels utilisés en mathématiques, en logique et en informatique théorique ne sont définis dans un premier temps que syntaxiquement ; pour en donner une définition complète, il faut expliquer comment ils fonctionnent et en donner une interprétation. Le domaine de la logique qui donne une interprétation aux langages formels s'appelle la sémantique formelle.
Théorie des cordesEn physique fondamentale, la théorie des cordes est un cadre théorique dans lequel les particules ponctuelles de la physique des particules sont représentées par des objets unidimensionnels appelés cordes. La théorie décrit comment ces cordes se propagent dans l'espace et interagissent les unes avec les autres. Sur des échelles de distance supérieures à l'échelle de la corde, cette dernière ressemble à une particule ordinaire, avec ses propriétés de masse, de charge et autres, déterminées par l'état vibratoire de la corde.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Symbole (logique)alt=Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels. Les symboles et les chaînes de symboles peuvent être divisés en formules bien formées. Un langage formel peut être considéré comme identique à l'ensemble de ses formules bien formées. L'ensemble des formules bien formées peut être divisé en théorèmes et non-théorèmes.|vignette|Ce diagramme montre les entités syntaxiques qui peuvent être construits à partir des langages formels.
Psychologie mathématiqueLa psychologie mathématique est une approche de la recherche psychologique basée sur la modélisation mathématique des processus perceptifs, cognitifs et moteurs, et sur l'établissement de règles qui relient les caractéristiques de stimulus quantifiables à un comportement quantifiable. L'approche mathématique est utilisée dans le but de dériver des hypothèses plus exactes et de produire ainsi des validations empiriques plus strictes. Le comportement quantifiable est en pratique souvent constitué par la performance de la tâche.