Inégalité de HoeffdingEn théorie des probabilités, l’inégalité de Hoeffding est une inégalité de concentration concernant les sommes de variables aléatoires indépendantes et bornées. Elle tire son nom du mathématicien et statisticien finlandais Wassily Hoeffding. Il existe une version plus générale de cette inégalité, concernant une somme d'accroissements de martingales, accroissements là encore bornés : cette version plus générale est parfois connue sous le nom d'inégalité d'Azuma-Hoeffding.
Argument téléologique (religion)Largument téléologique, ou argument du dessein divin', est l'argument sur l'existence de Dieu qui se base sur des preuves perceptibles d'ordre, d'intention, de conception ou de direction - ou d'une combinaison de ceux-ci - dans la nature. Il s'appuie sur l'aspect complexe du monde qui semble avoir été conçu, et serait donc l'objectif ou le but d'un être intelligent. Cet argument a été remis au goût du jour par les créationnistes américains, sous la forme du mouvement du Dessein intelligent.
Hazard ratioIn survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate per unit time of the control population. The hazard ratio would be 2, indicating higher hazard of death from the treatment. A scientific paper might utilise a Hazard Ratio (HR) to state something as follows.
Inégalité de concentrationDans la théorie des probabilités, les inégalités de concentration fournissent des bornes sur la probabilité qu'une variable aléatoire dévie d'une certaine valeur (généralement l'espérance de cette variable aléatoire). Par exemple, la loi des grands nombres établit qu'une moyenne de variables aléatoires i.i.d. est, sous réserve de vérifier certaines conditions, proche de leur espérance commune. Certains résultats récents vont plus loin, en montrant que ce comportement est également vérifié par d'autres fonctions de variables aléatoires indépendantes.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Logical formIn logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.
Régression de CoxLa régression de Cox (modèle à risque proportionnel) est une classe de modèles de survie en statistique. Les modèles de survie étudient le temps écoulé avant qu'un événement ne survienne. Historiquement, dans le modèle de Cox, cet événement est le décès de l'individu, c'est pourquoi on parle généralement de survie et de décès. Au cours des années, l'utilisation du modèle s'est étendue à d'autres situations, l'événement peut donc être de quelconque nature : il peut s'agir de la récidive d'une maladie, ou à l'inverse d'une guérison.
Analyse de surviethumb|Exemple de courbe de survie. L'analyse de (la) survie est une branche des statistiques qui cherche à modéliser le temps restant avant la mort pour des organismes biologiques (l'espérance de vie) ou le temps restant avant l'échec ou la panne dans les systèmes artificiels, ce que l'on représente graphiquement sous la forme d'une courbe de survie. On parle aussi d'analyse de la fiabilité en ingénierie, d'analyse de la durée en économie ou d'analyse de l'histoire d'événements en sociologie.
Taux de défaillanceLe taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.