Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Décomposition en produit de facteurs premiersvignette|Décomposition du nombre 864 en facteurs premiers En mathématiques et plus précisément en arithmétique, la décomposition en produit de facteurs premiers, aussi connue comme la factorisation entière en nombres premiers ou encore plus couramment la décomposition en facteurs premiers, consiste à chercher à écrire un entier naturel non nul sous forme d'un produit de nombres premiers. Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 3 × 5, soit 3 × 3 × 5.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Accélération (informatique)En architecture informatique, l'accélération (speedup en anglais) est une mesure du gain de performance entre deux systèmes traitant le même problème. Plus techniquement, c'est le gain de vitesse d'exécution d'une tâche exécutée par deux architectures similaires disposant de ressources différentes. La notion d'accélération a été établie par la loi d'Amdahl, qui se penchait principalement sur le calcul parallèle. Cependant, l'accélération peut être utilisée plus généralement pour montrer l'effet sur les performances lors de n'importe quelle amélioration des ressources.
Gradientvignette|Chaque champ scalaire est représenté par un dégradé (blanc = valeur basse, noir = valeur haute). Chaque gradient est un champ vectoriel, représenté par des flèches bleues ; chacune pointe dans la direction où le champ scalaire croît le plus vite. vignette|La fonction à deux variables f(x, y) = xe−(x2 + y2) correspond à la température (bleu = valeur basse = froid, rouge = valeur haute = chaud). Le gradient de f est un champ vectoriel, représenté par les flèches bleues ; chacune pointe dans la direction où la température croît le plus vite.
Algorithme gloutonUn algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.
Sélection de parentèleLa est une théorie permettant d'expliquer l'apparition, au cours de l'évolution, d'un comportement altruiste chez des organismes vis-à-vis d'autres organismes. Elle affirme, en général, que les instincts altruistes augmentent avec l'apparentement sous l'effet de la sélection naturelle. La sélection de parentèle permet d'expliquer l'origine des comportements altruistes au sein des sociétés animales. Cette théorie fut développée en 1964 par le biologiste anglais William Donald Hamilton et le premier résultat théorique d'importance fut produit par le biologiste américain George Price en 1970 et publié dans Nature.
Hyperparameter optimizationIn machine learning, hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are learned. The same kind of machine learning model can require different constraints, weights or learning rates to generalize different data patterns.
Fonction régulière non analytiqueEn mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz.
NablaNabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.