Représentations du groupe symétriqueEn mathématiques les représentations du groupe symétrique sont un exemple d'application de la théorie des représentations d'un groupe fini. L'analyse de ces représentations est une illustration des concepts comme le théorème de Maschke, les caractères, la représentation régulière, les représentations induites et la réciprocité de Frobenius. L'histoire des représentations du groupe symétrique et du groupe alterné associés, joue un rôle particulier pour la théorie des caractères.
Diviseur unitaireIn mathematics, a natural number a is a unitary divisor (or Hall divisor) of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Thus, 5 is a unitary divisor of 60, because 5 and have only 1 as a common factor, while 6 is a divisor but not a unitary divisor of 60, as 6 and have a common factor other than 1, namely 2. 1 is a unitary divisor of every natural number. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.
Invariance de LorentzL' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz.
Ring of symmetric functionsIn algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.
Théorie conforme des champsUne théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Interaction élémentaireQuatre interactions élémentaires sont responsables de tous les phénomènes physiques observés dans l'Univers, chacune se manifestant par une force dite force fondamentale. Ce sont l'interaction nucléaire forte, l'interaction électromagnétique, l'interaction faible et l'interaction gravitationnelle. En physique classique, les lois de la gravitation et de l'électromagnétisme étaient considérées comme axiomes.
Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.
Groupe de Poincaré (transformations)Le groupe de Poincaré ou symétrie de Poincaré est l'ensemble des isométries de l'espace-temps de Minkowski. Il a la propriété d'être un groupe de Lie non compact à 10 dimensions. Sa version complète inclut quatre types de symétrie : les translations (c'est-à-dire les déplacements) dans le temps et l'espace, formant le groupe de Lie abélien des translations sur l'espace-temps ; les rotations dans l'espace, qui forment le groupe de Lie non abélien des rotations tridimensionnelles ; les transformations de Lorentz propres et orthochrones, laissant inchangés le sens du temps et l'orientation de l'espace ; le renversement du temps T et la parité P (renversement des coordonnées d'espace), qui forment un groupe discret (Id ; T ; P ; PT).
Mass gapIn quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle. Since the energies of exact (i.e. nonperturbative) energy eigenstates are spread out and therefore they are not technically eigenstates, a more precise definition is that the mass gap is the greatest lower bound of the energy of any state which is orthogonal to the vacuum.
History of Lorentz transformationsThe history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product . In mathematics, transformations equivalent to what was later known as Lorentz transformations in various dimensions were discussed in the 19th century in relation to the theory of quadratic forms, hyperbolic geometry, Möbius geometry, and sphere geometry, which is connected to the fact that the group of motions in hyperbolic space, the Möbius group or projective special linear group, and the Laguerre group are isomorphic to the Lorentz group.