Potentiel thermodynamiqueEn thermodynamique, un potentiel thermodynamique est une fonction d'état particulière qui permet de prédire l'évolution et l'équilibre d'un système thermodynamique, et à partir de laquelle on peut déduire toutes les propriétés (comme les capacités thermiques, le coefficient de dilatation, le coefficient de compressibilité) du système à l'équilibre. Les divers potentiels thermodynamiques correspondent aux divers jeux de variables d'état utilisés dans l'étude des processus thermodynamiques.
Plante annuelleLes plantes annuelles sont des plantes dont le cycle de vie, de la germination jusqu'à la production de graines, ne dure qu'une année. Dans la classification de Raunkier, elles correspondent à la classe des thérophytes. Ces plantes passent l'hiver uniquement sous forme de graines. En horticulture, les plantes annuelles sont généralement cultivées pour leurs fleurs (on parle souvent de fleurs annuelles). Elles sont appréciées pour leur capacité à fleurir rapidement en jardin pendant les saisons d'été et d'automne.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
ThermodynamiqueLa thermodynamique est la branche de la physique qui traite de la dépendance des propriétés physiques des corps à la température, des phénomènes où interviennent des échanges thermiques, et des transformations de l'énergie entre différentes formes. La thermodynamique peut être abordée selon deux approches différentes et complémentaires : phénoménologique et statistique. La thermodynamique phénoménologique ou classique a été l'objet de nombreuses avancées dès le .
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Formulation faibleEn comparaison avec la formulation forte, la formulation faible est une autre manière d'énoncer un problème physique régi par des équations différentielles ou aux dérivées partielles. Une solution forte du problème d’origine est également solution de la formulation faible. Une solution de cette dernière est naturellement appelée solution faible. L’intérêt de cette approche est de pouvoir disposer de concepts et de propriétés de l’analyse fonctionnelle, en particulier ceux des espaces de Hilbert et de Sobolev.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.