Publication

Restriction of 3D arithmetic Laplace eigenfunctions to a plane

2020
Article
Résumé

We consider a random Gaussian ensemble of Laplace eigenfunctions on the 3D torus, and investigate the 1-dimensional Hausdorff measure ('length') of nodal intersections against a smooth 2-dimensional toral sub-manifold ('surface'). A prior result of ours prescribed the expected length, universally proportional to the area of the reference surface, times the wavenumber, independent of the geometry. In this paper, for surfaces contained in a plane, we give an upper bound for the nodal intersection length variance, depending on the arithmetic properties of the plane. The bound is established via estimates on the number of lattice points in specific regions of the sphere.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.