Mesure de HausdorffIn mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite.
Mesure de LebesgueLa mesure de Lebesgue est une mesure qui étend le concept intuitif de volume à une très large classe de parties de l'espace. Comme l'a immédiatement perçu son inventeur, Henri Lebesgue, elle permet de bâtir une théorie de l'intégration très performante et fondamentale en analyse moderne : la théorie de l'intégrale de Lebesgue. Plusieurs constructions bien différentes de la mesure de Lebesgue sont connues. Chacune d'entre elles peut naturellement être prise pour définition ; dans le cadre d'un article où il faut toutes les évoquer, il est prudent de fournir en ouverture une définition plus unificatrice.
Felix HausdorffFelix Hausdorff est un mathématicien allemand né le à Breslau (aujourd'hui Wrocław) et mort le à Bonn. Il est l'auteur, sous le nom de Paul Mongré, de travaux philosophiques et littéraires. Considéré comme l'un des fondateurs de la topologie moderne, il contribua aussi significativement à la théorie des ensembles, à la théorie de la mesure et à l'analyse fonctionnelle. Son nom a été donné en 2007 au Centre Hausdorff pour les mathématiques de Bonn, ville où il a enseigné et s'est suicidé avec sa femme pour échapper à la déportation.
Hausdorff paradoxThe Hausdorff paradox is a paradox in mathematics named after Felix Hausdorff. It involves the sphere (a 3-dimensional sphere in ). It states that if a certain countable subset is removed from , then the remainder can be divided into three disjoint subsets and such that and are all congruent. In particular, it follows that on there is no finitely additive measure defined on all subsets such that the measure of congruent sets is equal (because this would imply that the measure of is simultaneously , , and of the non-zero measure of the whole sphere).
Mesure régulièreEn théorie de la mesure, une mesure régulière est une mesure sur un espace topologique séparé mesuré qui vérifie deux propriétés qui lient mesure et topologie. Quelques énoncés qui posent des conditions topologiques assez couramment remplies permettent de garantir la régularité d'une mesure de Borel. Une mesure (positive) définie sur une tribu contenant la tribu borélienne d'un espace séparé X est dite régulière lorsqu'elle est à la fois intérieurement régulière et extérieurement régulière, c'est-à-dire lorsque : pour tout élément de la tribu, ; pour tout élément de la tribu, .
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Torevignette|Modélisation d'un tore Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte : en ingénierie ou en géométrie élémentaire, un tore est un solide de révolution de l'espace obtenu à partir d'un cercle, ou bien sa surface. Une chambre à air, une bouée, certains joints d'étanchéité ou encore certains beignets (les donuts nord-américains) ont ainsi une forme plus ou moins torique ; en architecture, un tore correspond à une moulure ronde, semi-cylindrique.
Fonction propreEn théorie spectrale, une fonction propre f d'un opérateur linéaire sur un espace fonctionnel est un vecteur propre de l'opérateur linéaire. En d’autres termes, une fonction propre d'un opérateur linéaire, , défini sur un certain espace de fonction, est toute fonction f non identiquement nulle sur cet espace qui, lorsqu’elle se voit appliquer cet opérateur en ressort exactement pareille à elle-même, à un facteur d'échelle multiplicatif près. Cette fonction satisfait donc : pour un scalaire λ, la valeur propre associée à f.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.