DérivéeEn mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Théorème de SchwarzLe théorème de Schwarz, de Clairaut ou de Young est un théorème d'analyse portant sur les dérivées partielles secondes d'une fonction de plusieurs variables. Il apparaît pour la première fois dans un cours de calcul différentiel donné par Weierstrass en 1861 auquel assistait alors Hermann Schwarz à Berlin. La symétrie de la hessienne signifie que le résultat d'une dérivation partielle à l'ordre 2 par rapport à deux variables ne dépend pas de l'ordre dans lequel se fait la dérivation par rapport à ces deux variables : Ce théorème est parfois appelé par les anglophones (théorème de Young), nom qui désigne également une extension aux dérivées d'ordre supérieur.
Wirtinger derivativesIn complex analysis of one and several complex variables, Wirtinger derivatives (sometimes also called Wirtinger operators), named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiabl
Lésion cérébraleUne lésion cérébrale est une lésion qui touche le cerveau. En général, il s'agit d'une destruction plus ou moins étendue du tissu nerveux entraînant un déficit dans la perception, la cognition, la sensibilité ou la motricité en fonction du rôle que jouait la région atteinte dans l'architecture neurocognitive. Cette lésion peut être de nature diverse : ischémique, hémorragique, compressive par un processus extensif de type tumoral ou un hématome.
Tumeur du cerveauvignette|Biopsie du cerveau vignette|Scanner du cerveau d'une fillette de 6 ans atteinte d'un médulloblastome (tumeur cérébrale la plus fréquente chez les enfants de moins de 2 ans). Les tumeurs cérébrales désignent l'ensemble des tumeurs, bénignes ou malignes, se développant dans le parenchyme cérébral. Elles surviennent par le développement anormal et désorganisé de divisions cellulaires, à partir soit d'une cellule du cerveau lui-même, soit d'une cellule métastatique exportée d'un cancer situé dans une autre partie du corps.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
NablaNabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
Generalizations of the derivativeIn mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. The Fréchet derivative defines the derivative for general normed vector spaces . Briefly, a function , an open subset of , is called Fréchet differentiable at if there exists a bounded linear operator such that Functions are defined as being differentiable in some open neighbourhood of , rather than at individual points, as not doing so tends to lead to many pathological counterexamples.
Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).