Variation totale d'une fonctionEn mathématiques, la variation totale est liée à la structure (locale ou globale) du codomaine d'une fonction. Pour une fonction continue à valeurs réelles f, définie sur un intervalle [a, b] ⊂ R, sa variation totale sur l'intervalle de définition est une mesure de la longueur d'arc de la projection sur l'axe des ordonnées de la courbe paramétrée (x, f(x)), pour x ∈ [a, b]. L'idée de variation totale pour les fonctions d'une variable réelle a d'abord été introduite par Camille Jordan, afin de démontrer un théorème de convergence pour les séries de Fourier de fonctions discontinues périodiques à variation bornée.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Régression de PoissonEn statistique, la régression de Poisson est un modèle linéaire généralisé utilisé pour les données de comptage et les tableaux de contingence. Cette régression suppose que la variable réponse Y suit une loi de Poisson et que le logarithme de son espérance peut être modélisé par une combinaison linéaire de paramètre inconnus. Soit un vecteur de variables indépendantes, et la variable que l'on cherche à prédire. Réaliser une régression de Poisson revient à supposer que suit une loi de Poisson de paramètre , avec et les paramètres de la régression à estimer, et le produit scalaire standard de .
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Distance de HellingerEn Théorie des probabilités, pour toutes mesures de probabilités et absolument continues par rapport à une troisième mesure , le carré de la distance de Hellinger entre et est donné par : où et désignent respectivement les dérivées de Radon-Nykodym de et . Cette définition ne dépend pas de , si bien que la distance de Hellinger entre et ne change pas si est remplacée par une autre mesure de probabilité par rapport à laquelle et soient absolument continues.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Recherche tabouLa recherche tabou est une métaheuristique d'optimisation présentée par Fred W. Glover en 1986. On trouve souvent l'appellation recherche avec tabous en français. Cette méthode est une métaheuristique itérative qualifiée de recherche locale au sens large. L'idée de la recherche tabou consiste, à partir d'une position donnée, à en explorer le voisinage et à choisir la position dans ce voisinage qui minimise la fonction objectif.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.