Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Constant curvatureIn mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature is said to be constant if it has the same value at every point and for every two-dimensional tangent plane at that point. For example, a sphere is a surface of constant positive curvature.
Pseudoconvex functionIn convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative. The property must hold in all of the function domain, and not only for nearby points.
Fonction concaveEn mathématiques, une fonction f est dite concave lorsque la fonction opposée –f est convexe. Le fait que l'on préfère commencer par définir la notion de fonction convexe et d'en déduire celle de fonction concave trouve son origine dans le fait que l'on définit aisément la notion d'ensemble convexe, alors que celle d'« ensemble concave » est moins naturelle. On définit alors les fonctions convexes comme celles ayant un épigraphe convexe (les fonctions concaves ont un hypographe convexe).
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Méthode de dichotomieLa méthode de dichotomie ou méthode de la bissection est, en mathématiques, un algorithme de recherche d'un zéro d'une fonction qui consiste à répéter des partages d’un intervalle en deux parties puis à sélectionner le sous-intervalle dans lequel existe un zéro de la fonction. On considère deux nombres réels a et b et une fonction réelle f continue sur l'intervalle [a, b] telle que f(a) et f(b) soient de signes opposés. Supposons que nous voulions résoudre l'équation f(x) = 0.
Méthode de la sécanteEn analyse numérique, la méthode de la sécante est un algorithme de recherche d'un zéro d'une fonction f. La méthode de la sécante est une méthode comparable à celle de Newton, où l'on remplace par On obtient la relation de récurrence : L'initialisation nécessite deux points x0 et x1, proches, si possible, de la solution recherchée. Il n'est pas nécessaire que x0 et x1 encadrent une racine de f. La méthode de la sécante peut aussi être vue comme une généralisation de la méthode de la fausse position, où les calculs sont itérés.