Équation fonctionnelleEn mathématiques, une équation fonctionnelle est une équation dont les inconnues sont des fonctions. De nombreuses propriétés de fonctions peuvent être déterminées en étudiant les équations auxquelles elles satisfont. D'habitude, le terme « équation fonctionnelle » est réservé aux équations qu'on ne peut pas ramener à des équations plus simples, par exemple à des équations différentielles.
Théorème de plongement de NashEn géométrie différentielle, le théorème de plongement de Nash, dû au mathématicien John Forbes Nash, affirme que toute variété riemannienne peut être plongée de manière isométrique dans un espace euclidien. « De manière isométrique » veut dire « conservant la longueur des courbes ». Une conséquence de ce théorème est que toute variété riemannienne peut être vue comme une sous-variété d'un espace euclidien. Il existe deux théorèmes de plongement de Nash : Le premier (1954), portant sur les variétés de classe C1.
Fonction zêta de Hurwitzvignette|Fonction zêta de Hurwitz En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie, pour toute valeur q du paramètre, nombre complexe de partie réelle strictement positive, par la série suivante, convergeant vers une fonction holomorphe sur le demi-plan des complexes s tels que Re(s) > 1 : Par prolongement analytique, s'étend en une fonction méromorphe sur le plan complexe, d'unique pôle s = 1. est la fonction zêta de Riemann. où Γ désigne la fonction Gamma.
Faisceau (mathématiques)En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert.
Théorème d'inversion localeEn mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.