Ensemble statistiqueEn physique statistique, un ensemble statistique est une abstraction qui consiste à considérer une collection de copies virtuelles (ou répliques) d'un système physique dans l'ensemble des états accessibles où il est susceptible de se trouver, compte tenu des contraintes extérieures qui lui sont imposées, telles le volume, le nombre de particules, l'énergie et la température. Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902, est un concept central de la physique statistique.
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Ensemble canoniqueEn physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée.
Ensemble grand-canoniqueEn physique statistique, l’ensemble grand-canonique est un ensemble statistique qui correspond au cas d'un système qui peut échanger de l'énergie avec un réservoir externe d'énergie (ou thermostat), ainsi que des particules. Il est donc en équilibre thermodynamique thermique et chimique avec le réservoir d'énergie et de particules. Plus précisément, il s'agit de l'ensemble des « copies virtuelles » (ou répliques fictives) du même système en équilibre avec le réservoir d'énergie et de particules.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.
Fluctuation theoremThe fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease over a given amount of time. While the second law of thermodynamics predicts that the entropy of an isolated system should tend to increase until it reaches equilibrium, it became apparent after the discovery of statistical mechanics that the second law is only a statistical one, suggesting that there should always be some nonzero probability that the entropy of an isolated system might spontaneously decrease; the fluctuation theorem precisely quantifies this probability.
Quantum statistical mechanicsQuantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.
Ensemble microcanoniqueEn physique statistique, l'ensemble microcanonique est un ensemble statistique constitué des répliques fictives d'un système réel pouvant être considéré comme isolé, par suite dont l'énergie (E), le volume (V) et le nombre de particules (N) sont fixés. Cet ensemble statistique a une importance particulière, car c'est à partir de celui-ci que le postulat de la physique statistique est défini. Cet ensemble permet aussi de déterminer les ensembles canonique et grand-canonique, à l'aide d'échanges d'énergie et/ou de particules avec un réservoir.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.