Models of communicationModels of communication are simplified representations of the process of communication. Most models try to describe both verbal and non-verbal communication and often understand it as an exchange of messages. Their function is to give a compact overview of the complex process of communication. This helps researchers formulate hypotheses, apply communication-related concepts to real-world cases, and test predictions. Despite their usefulness, many models are criticized based on the claim that they are too simple because they leave out essential aspects.
Communication inter-processusvignette|Image montrant un échange de données (avec un communication inter-processus) entre deux unités d'un cloud computing. En informatique, la communication inter-processus (inter-process communication, IPC, en anglais) regroupe un ensemble de mécanismes permettant à des processus concurrents de communiquer. Ces mécanismes peuvent être classés en trois catégories : les mécanismes permettant l'échange de données entre les processus ; les mécanismes permettant la synchronisation entre les processus (notamment pour gérer le principe de section critique) ; les mécanismes permettant l'échange de données et la synchronisation entre les processus.
Intelligence artificielle distribuéeL'Intelligence Artificielle Distribuée (IAD) est une branche de l'Intelligence artificielle. On distinguera : le principe d'adapter les approches de l'Intelligence Artificielle classique sur une architecture distribuée (par exemple avec une parallélisation des programmes) les approches où l'Intelligence Artificielle est conceptuellement répartie sur un certain nombre d'entités (réseaux de neurones artificiels, systèmes multi-agents) de façon similaire à une Intelligence distribuée.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Extrêmement basse fréquenceL’extrêmement basse fréquence ou EBF (en anglais, extremely low frequency ou ELF) est la bande de rayonnement électromagnétique (radiofréquences) comprise entre (longueur d'onde de ). Dans le domaine des sciences de l'atmosphère, une définition alternative est généralement retenue : de 3 Hz à 3 kHz. La fréquence du courant alternatif dans les réseaux électriques (50 ou 60 Hz) est située dans la bande de ELF, ce qui fait des réseaux électriques une source involontaire de rayonnement ELF.
Communication animaleLa communication animale regroupe l'ensemble des échanges d'information entre des individus d'une même espèce (communication intraspécifique) ou d'espèces différentes (communication extraspécifique) chez les animaux. Les animaux communiquent entre eux pour différentes raisons : séduction du partenaire, compétition pour les ressources, recherche de nourriture. Ils utilisent pour cela un signal ou un message (support physique de l'information), comme une odeur, un son, un mouvement, ou un signal électrique.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Algorithme de Primthumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.