VagueUne vague () est une déformation de la surface d'une masse d'eau le plus souvent sous l'effet du vent. À l'interface des deux fluides principaux de la Terre, le vent crée des vagues sur les océans, mers et lacs. Ces mouvements irréguliers se dispersent à la surface de l'eau et sont collectivement appelés état de la mer. D'autres phénomènes, moins fréquents, sont aussi la source de vagues. Ainsi, les séismes majeurs, éruptions volcaniques ou chutes de météorites créent également des vagues appelées tsunamis ou raz-de-marée.
Vague scélératevignette|300px|droite|Vague scélérate vue d’un navire marchand (1940, golfe de Gascogne, ligne de sonde des ). Les vagues scélérates sont des vagues océaniques très hautes, soudaines, considérées comme très rares. Cette rareté est relative, les observations ne concernant qu'une très faible partie d'entre elles, compte tenu de l'étendue des océans et de la rapidité avec laquelle les vagues se forment et se défont au sein des trains de vagues où elles se propagent.
Hauteur significativeLa hauteur significative est une quantité statistique utilisée pour caractériser l'état de la mer. Elle est souvent abrégée en Hs ou H1/3 (ou SWH : Significant Wave Height en anglais). Elle représente la moyenne des hauteurs (mesurées entre crête et creux) du tiers des plus fortes vagues. Pour la calculer à partir d'un enregistrement d'élévation de la surface, on classe les vagues par ordre de hauteur, et la moyenne des hauteurs du tiers supérieur donne la Hs.
Onde de gravitéthumb|upright=1.5|Motif nuageux formé par les ondes de gravité en aval de l'Île Amsterdam, une île volcanique de l'Océan Indien En mécanique des fluides, on désigne par onde de gravité une onde se déplaçant sur la surface libre d'un fluide soumis à la gravité. En océanographie, les vagues en milieu ouvert ou le ballottement en milieu fermé constituent des exemples d'ondes de gravité.
Wave heightIn fluid dynamics, the wave height of a surface wave is the difference between the elevations of a crest and a neighboring trough. Wave height is a term used by mariners, as well as in coastal, ocean and naval engineering. At sea, the term significant wave height is used as a means to introduce a well-defined and standardized statistic to denote the characteristic height of the random waves in a sea state, including wind sea and swell. It is defined in such a way that it more or less corresponds to what a mariner observes when estimating visually the average wave height.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Réponse indicielleEn automatique la réponse indicielle est la réponse d'un système dynamique à une fonction marche de Heaviside communément appelée échelon. Si le système est un système linéaire invariant (SLI) à temps continu ou discret, alors la réponse indicielle est définie par les relations respectives suivantes : Lorsque le système est asymptotiquement stable, la réponse indicielle converge vers une valeur limite (asymptote horizontale) appelée valeur stationnaire ou finale.