Nanotube de carbonethumb|Représentation d'un nanotube de carbone. (cliquer pour voir l'animation tridimensionnelle). thumb|Un nanotube de carbone monofeuillet. thumb|Extrémité d'un nanotube, vue au microscope électronique. Les nanotubes de carbone (en anglais, carbon nanotube ou CNT) sont une forme allotropique du carbone appartenant à la famille des fullerènes. Ils sont composés d'un ou plusieurs feuillets d'atomes de carbone enroulés sur eux-mêmes formant un tube. Le tube peut être fermé ou non à ses extrémités par une demi-sphère.
Potential applications of carbon nanotubesCarbon nanotubes (CNTs) are cylinders of one or more layers of graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m. Individual CNT walls can be metallic or semiconducting depending on the orientation of the lattice with respect to the tube axis, which is called chirality.
Enthalpie libreL’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .
Énergie libreEn thermodynamique, l'énergie libre, appelée aussi énergie libre de Helmholtz ou simplement énergie de Helmholtz, est une fonction d'état extensive dont la variation permet d'obtenir le travail utile susceptible d'être fourni par un système thermodynamique fermé, à température constante, au cours d'une transformation réversible. En français on la représente généralement par ; en anglais on l'appelle énergie libre de Helmholtz et on la représente généralement par .
Thermodynamic free energyIn thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system (the others being internal energy, enthalpy, entropy, etc.). The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point.
Free entropyA thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability.
Force entropiqueEn physique, une force entropique est une force dont la cause n'est pas une interaction fondamentale, mais un phénomène de nature thermodynamique. Un exemple simple de force entropique est la force qui résulte de l'étirement d'un élastique, comme l'explique ainsi le physicien Erik Verlinde : « Peut-être que l'exemple le plus connu est celui d'un polymère. Une seule molécule polymère peut être modélisée en joignant de nombreux monomères de longueur fixe, où chaque monomère peut librement tourner autour de points d'attache et s'orienter dans n'importe quelle direction.
Entropie (thermodynamique)L'entropie est une grandeur physique qui caractérise le degré de désorganisation d'un système. Introduite en 1865 par Rudolf Clausius, elle est nommée à partir du grec , littéralement « action de se retourner » pris au sens de « action de se transformer ». En thermodynamique, l'entropie est une fonction d'état extensive (c'est-à-dire, proportionnelle à la quantité de matière dans le système considéré). Elle est généralement notée , et dans le Système international d'unités elle s'exprime en joules par kelvin ().
Énergie thermiqueL'énergie thermique est l'énergie cinétique d'agitation microscopique d'un objet, qui est due à une agitation désordonnée de ses molécules et de ses atomes. L'énergie thermique est une partie de l'énergie interne d'un corps. Les transferts d'énergie thermique entre corps sont appelés transferts thermiques et jouent un rôle essentiel en thermodynamique. Ils atteignent un équilibre lorsque la température des corps est égale. Transfert thermique L'énergie thermique a tendance à se diffuser uniformément dans l'espace.
Effet hydrophobevignette|Une goutte d'eau forme une forme sphérique, minimisant le contact avec la feuille hydrophobe. L'effet hydrophobe est la tendance observée des substances non polaires à s'agréger dans une solution aqueuse et à exclure les molécules d'eau. Le mot « hydrophobe » signifie littéralement « craignant l'eau », et il décrit la ségrégation de l'eau et des substances non polaires, ce qui maximise la liaison hydrogène entre les molécules d'eau et minimise la zone de contact entre l'eau et les molécules non polaires.