vignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
vignette|upright|Mesurage avec une colonne de mesure. Une erreur de mesure, dans le langage courant, est Exemples usuels et fictifs d'après cette définition : L'indication d'une balance de ménage pour une masse de certifiée est de . L'erreur de mesure est de – ; La distance entre deux murs, donnée par un télémètre laser est de , valeur considérée ici comme exacte. La valeur mesurée, au même endroit, avec un mètre à ruban est de . L'erreur de mesure, avec le mètre à ruban, est de ou ; La différence sur 24 heures de temps entre une pendule radio pilotée et une montre bracelet est de .
In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
vignette|Un accéléromètre MEMS. vignette|alt=|Un accéléromètre piézoélectrique. Un accéléromètre est un capteur qui, fixé à un mobile ou tout autre objet, permet de mesurer l'accélération non gravitationnelle linéaire de ce dernier. On parle d'accéléromètre même lorsqu'il s'agit en fait de qui calculent les accélérations linéaires selon orthogonaux. Par contre, lorsqu'on cherche à détecter une rotation ou vitesse angulaire, on parle de gyromètre. Plus généralement on parle de centrale à inertie lorsqu'on cherche à mesurer l'ensemble des .
En statistique et en économétrie, la méthode des moments généralisée (en anglais generalized method of moments ou GMM) est une méthode générique pour estimer les paramètres d'un modèle statistique qui s'appuie sur un certain nombre de conditions sur les moments d'un modèle. Habituellement, cette méthode est utilisée dans un contexte de modèle semi-paramétrique, où le paramètre étudié est de dimension finie, alors que la forme complète de la fonction de distribution des données peut ne pas être connue (de ce fait, l'estimation par maximum de vraisemblance n'est pas applicable).
In statistics, a forecast error is the difference between the actual or real and the predicted or forecast value of a time series or any other phenomenon of interest. Since the forecast error is derived from the same scale of data, comparisons between the forecast errors of different series can only be made when the series are on the same scale. In simple cases, a forecast is compared with an outcome at a single time-point and a summary of forecast errors is constructed over a collection of such time-points.
Le Global Positioning System (GPS) (en français : « Système mondial de positionnement » [littéralement] ou « Géo-positionnement par satellite »), originellement connu sous le nom de Navstar GPS, est un système de positionnement par satellites appartenant au gouvernement fédéral des États-Unis. Mis en place par le département de la Défense des États-Unis à des fins militaires à partir de 1973, le système avec vingt-quatre satellites est totalement opérationnel en 1995.
Le Guidage, Navigation et Contrôle également connu sous son acronyme GNC (autres appellations : Navigation, Guidage et Pilotage, Guidage, Navigation et Contrôle) est, dans le domaine spatial, le système d'un véhicule spatial (lanceur, satellite en orbite autour de la Terre, sonde d'exploration du système solaire, rover posé sur un autre astre) qui est chargé de piloter celui-ci vers son objectif en s'appuyant sur la connaissance de sa position dans l'espace, de son attitude et des forces auxquels il est sou
In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
vignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.