Intégration sensorielleL’intégration sensorielle fait référence à plusieurs concepts différents. En neurophysiologie, l’intégration sensorielle se réfère au processus neurologique impliquant la réception, la modulation et l’intégration des informations sensorielles. Le système nerveux transforme les sensations en perceptions en organisant les informations sensorielles provenant du corps et de l’environnement (fournies par les différents systèmes sensoriels : tactile, auditif, visuel, gustatif/olfactif, vestibulaire, proprioceptif) afin d’utiliser efficacement le corps.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Fonction logistique (Verhulst)En mathématiques, les fonctions logistiques sont les fonctions ayant pour expression où et sont des réels positifs et un réel quelconque. Ce sont les solutions en temps continu du modèle de Verhulst. Pour , leur courbe représentative a la forme d'un S ce qui fait qu'elles sont parfois appelées sigmoïdes. Ces fonctions ont été mises en évidence (vers 1840) par Pierre-François Verhulst, qui cherchait un modèle d'évolution non exponentielle de population comportant un frein et une capacité d'accueil .
Réseau de neurones (biologie)En neurosciences, un réseau de neurones correspond, schématiquement : Soit à un nombre restreint de différents neurones interconnectés, qui ont une fonction précise, comme le ganglion stomatogastrique qui contrôle l'activité des muscles de l'estomac des crustacés. Soit à un grand nombre de neurones similaires interconnectés, qui ont des fonctions plus cognitives, comme les réseaux corticaux qui permettent entre autres la catégorisation.
Vuethumb|250px|Ommatidies de krill antarctique, composant un œil primitif adapté à une vision sous-marine. thumb|250px|Yeux de triops, primitifs et non mobiles. thumb|250px|Yeux multiples d'une araignée sauteuse (famille des Salticidae, composée d'araignées chassant à l'affut, mode de chasse nécessitant une très bonne vision). thumb|250px|Œil de la libellule Platycnemis pennipes, offrant un champ de vision très large, adapté à un comportement de prédation.
Réalité augmentéeLa réalité augmentée est la superposition de la réalité et d'éléments (sons, images 2D, 3D, vidéos) calculés par un système informatique en temps réel. Elle désigne souvent les différentes méthodes qui permettent d'incruster de façon réaliste des objets virtuels dans une séquence d'images. Elle s'applique aussi bien à la perception visuelle (superposition d'images virtuelles aux images réelles) qu'aux perceptions proprioceptives comme les perceptions tactiles ou auditives.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Bayesian epistemologyBayesian epistemology is a formal approach to various topics in epistemology that has its roots in Thomas Bayes' work in the field of probability theory. One advantage of its formal method in contrast to traditional epistemology is that its concepts and theorems can be defined with a high degree of precision. It is based on the idea that beliefs can be interpreted as subjective probabilities. As such, they are subject to the laws of probability theory, which act as the norms of rationality.