Hold me tight! Influence of discriminative features on deep network boundaries
Publications associées (38)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
p>We study the dynamics of optimization and the generalization properties of one-hidden layer neural networks with quadratic activation function in the overparametrized regime where the layer width m is larger than the input dimension d. We conside ...
We generalize the hidden-fermion family of neural network quantum states to encompass both continuous and discrete degrees of freedom and solve the nuclear many-body Schrodinger equation in a systematically improvable fashion. We demonstrate that adding hi ...
Noisy labels often occur in vision datasets, especially when they are obtained from crowdsourcing or Web scraping. We propose a new regularization method, which enables learning robust classifiers in presence of noisy data. To achieve this goal, we propose ...
We propose a new defense mechanism against adversarial at-tacks inspired by an optical co-processor, providing robustness without compromising natural accuracy in both white-box and black-box settings. This hardware co-processor performs a nonlinear fixed ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
In this supplementary material, we present the details of the neural network architecture and training settings used in all our experiments. This holds for all experiments presented in the main paper as well as in this supplementary material. We also show ...
Neural Network (NN) classifiers can assign extreme probabilities to samples that have not appeared during training (out-of-distribution samples) resulting in erroneous and unreliable predictions. One of the causes for this unwanted behaviour lies in the us ...
Deep neural networks have been empirically successful in a variety of tasks, however their theoretical understanding is still poor. In particular, modern deep neural networks have many more parameters than training data. Thus, in principle they should over ...
Optical diffraction tomography (ODT) provides us 3D refractive index (RI) distributions of transparent samples. Since RI values differ across different materials, they serve as endogenous contrasts. It, therefore, enables us to image without pre-processing ...