Entrée-sortieDans un système à base de processeur, de microprocesseur, de microcontrôleur ou d'automate, on appelle entrée-sortie toute interface permettant d’échanger des données entre le processeur et les périphériques qui lui sont associés. De la sorte, le système peut réagir à des modifications de son environnement, voire le contrôler. Elles sont parfois désignées par l'acronyme I/O, issu de l'anglais Input/Output ou encore E/S pour entrée/sortie. Dans un système d'exploitation : les entrées sont les données envoyées par un périphérique (disque, réseau, clavier, capteur.
ConnectomeLe connectome est un plan complet des connexions neuronales d'un cerveau. La production et l'étude des connectomes est la connectomique. À l'échelle microscopique, elle décrit la disposition des neurones et des synapses dans tout ou partie du système nerveux d'un organisme. À l'échelle "macroscopique", elle étudie la connectivité fonctionnelle et structurelle entre toutes les aires corticales et les structures sous-corticales.
ConnectomiqueLa connectomique est l'établissement et l'étude du connectome, c'est-à-dire de l'ensemble des connexions neuronales du cerveau. La connectomique est la production et l'étude des connectomes : des cartes complètes des connexions au sein du système nerveux d'un organisme. Plus généralement, on peut considérer qu'il s'agit de l'étude des schémas de câblage neuronaux, en mettant l'accent sur la façon dont la connectivité structurelle, les synapses individuelles, la morphologie et l'ultrastructure cellulaires contribuent à la constitution d'un réseau.
Problème P ≟ NPvignette|400px|Représentation visuelle des deux configurations possibles. Le problème P ≟ NP est une conjecture en mathématiques, et plus précisément en informatique théorique, considérée par de nombreux chercheurs comme une des plus importantes conjectures du domaine, et même des mathématiques en général. L'Institut de mathématiques Clay a inclus ce problème dans sa liste des sept problèmes du prix du millénaire, et offre à ce titre un million de dollars à quiconque sera en mesure de démontrer P = NP ou P ≠ NP ou de démontrer que ce n'est pas démontrable.
PerceptronLe perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt au laboratoire d'aéronautique de l'université Cornell. Il s'agit d'un neurone formel muni d'une règle d'apprentissage qui permet de déterminer automatiquement les poids synaptiques de manière à séparer un problème d'apprentissage supervisé. Si le problème est linéairement séparable, un théorème assure que la règle du perceptron permet de trouver une séparatrice entre les deux classes.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.