Bio-inspired standing balance controller for a full-mobilization exoskeleton
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The fabrication and control of robot hands with biologically inspired structure remains challenging due to its cost and complexity. In this paper we explore how widely available FDM printers can be used to fabricate complex hand structures by leveraging co ...
Planning multicontact motions in a receding horizon fashion requires a value function to guide the planning with respect to the future, e.g., building momentum to traverse large obstacles. Traditionally, the value function is approximated by computing traj ...
Underwater soft robots are challenging to model and control because of their high degrees of freedom and their intricate coupling with water. In this letter, we present a method that leverages the recent development in differentiable simulation coupled wit ...
Institute of Electrical and Electronics Engineers Inc.2021
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
The deployment of robots for Gas Source Lo- calization (GSL) tasks in hazardous scenarios significantly reduces the risk to humans and animals. Gas sensing using mobile robots focuses primarily on simplified scenarios, due to the complexity of gas dispersi ...
Humans rely on the sense of touch in almost every aspect of daily life, whether to tie shoelaces, place fingertips on a computer keyboard or find keys inside a bag. With robots moving into human-centered environment, tactile exploration becomes more and mo ...
Dexterity robotic hands can (Cummings, 1996) greatly enhance the functionality of humanoid robots, but the making of such hands with not only human-like appearance but also the capability of performing the natural movement of social robots is a challenging ...
In this paper, we present a novel and practical approach for benchmarking agility. We focus on terrestrial, multilegged locomotion in the field of bio-inspired robotics. We define agility as the ability to perform a set of different but specific tasks exec ...
Bio-inspired robotic designs introducing and benefiting from morphological aspects present in animals allowed the generation of fast, robust, and energy-efficient locomotion. We used engineering tools and interdisciplinary knowledge transferred from biolog ...