Enthalpie libreL’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .
Potentiel d'électrodeLe potentiel d'électrode , en électrochimie, est la force électromotrice d'une cellule galvanique construite à partir d'une électrode de référence standard et d'une autre électrode à définir. Par convention, l'électrode de référence est l'électrode standard à hydrogène (SHE) définie comme ayant un potentiel de zéro volt. Le potentiel d'électrode peut également être défini comme la différence de potentiel entre les électrodes métalliques chargées et la solution saline.
Stockage de l'énergieLe stockage de l'énergie consiste à mettre en réserve une quantité d'énergie provenant d'une source pour une utilisation ultérieure. Il a toujours été utile et pratiqué, pour se prémunir d'une rupture d'un approvisionnement extérieur ou pour stabiliser à l'échelle quotidienne les réseaux électriques, mais il a pris une acuité supplémentaire depuis l'apparition de l'objectif de transition écologique.
Lois du mouvement de NewtonLes sont un ensemble de principes à la base de la grande théorie de Newton sur le mouvement des corps, appelée mécanique newtonienne ou mécanique classique. À ces lois générales du mouvement, Newton a ajouté la loi de la gravitation universelle permettant d'expliquer aussi bien la chute des corps que le mouvement de la Lune autour de la Terre. Elles sont énoncées pour la première fois dans son ouvrage Philosophiae naturalis principia mathematica en .
Harmonique sphériqueEn mathématiques, les harmoniques sphériques sont des fonctions harmoniques particulières, c'est-à-dire des fonctions dont le laplacien est nul. Les harmoniques sphériques sont particulièrement utiles pour résoudre des problèmes invariants par rotation, car elles sont les vecteurs propres de certains opérateurs liés aux rotations. Les polynômes harmoniques P(x,y,z) de degré l forment un espace vectoriel de dimension 2 l + 1, et peuvent s'exprimer en coordonnées sphériques (r, θ, φ) comme des combinaisons linéaires des (2 l + 1) fonctions : avec .
Niveau d'énergieUn niveau d'énergie est une quantité utilisée pour décrire les systèmes en mécanique quantique et par extension dans la physique en général, sachant que, s'il y a bien quantification de l'énergie, à un niveau d'énergie donné correspond un « état du système » donné ; à moins que le niveau d'énergie soit dit « dégénéré ». La notion de niveau d'énergie a été proposée en 1913 par le physicien danois Niels Bohr.
Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Loi de HookeEn physique, la loi de Hooke modélise le comportement des solides élastiques soumis à des contraintes. Elle stipule que la déformation élastique est une fonction linéaire des contraintes. Sous sa forme la plus simple, elle relie l'allongement (d'un ressort, par exemple) à la force appliquée. Cette loi de comportement a été énoncée par le physicien anglais Robert Hooke en 1676. La loi de Hooke est en fait le terme de premier ordre d'une série de Taylor. C'est donc une approximation qui peut devenir inexacte quand la déformation est trop grande.