KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.
UncertaintyUncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
ClimatLe climat est la distribution statistique des conditions de l'atmosphère terrestre dans une région donnée pendant une période donnée. L'étude du climat est la climatologie. Elle se distingue de la météorologie qui désigne l'étude du temps dans l’atmosphère à court terme et dans des zones ponctuelles. La caractérisation du climat est effectuée à partir de mesures statistiques annuelles et mensuelles sur des données atmosphériques locales : température, pression atmosphérique, précipitations, ensoleillement, humidité, vitesse du vent.
Modèle climatiqueUn modèle climatique est une modélisation mathématique du climat dans une zone géographique donnée. Historiquement, le premier modèle atmosphérique date de 1950, et a été testé sur le premier ordinateur existant, l'ENIAC. À la date du sixième rapport d'évaluation du GIEC (2021), autour de 100 modèles indépendants étaient utilisés par 49 différents laboratoires de climatologie à travers le monde. Les modèles varient en complexité. Les plus simples permettent de faire des simulations couvrant de plus larges domaines et étendues de temps.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Modèle de langageEn traitement automatique des langues, un modèle de langage ou modèle linguistique est un modèle statistique de la distribution de symboles distincts (lettres, phonèmes, mots) dans une langue naturelle. Un modèle de langage peut par exemple prédire le mot suivant dans une séquence de mots. Un modèle de langage n-gramme est un modèle de langage qui modélise des séquences de mots comme un processus de Markov. Il utilise l'hypothèse simplificatrice selon laquelle la probabilité du mot suivant dans une séquence ne dépend que d'une fenêtre de taille fixe de mots précédents.
VariogrammeLe est une fonction mathématique utilisée en géostatistique, en particulier pour le krigeage. On parle également de , de par le facteur 1⁄2 de sa définition. L', , ou est l'estimation et l'étude d'un variogramme sur une variable aléatoire. Considérons une variable aléatoire, de la variable d'espace , et supposons-la stationnaire, c'est-à-dire que la moyenne et la variance de sont indépendantes de . On pose la grandeur: Comme est stationnaire, le membre de droite dépend uniquement de la distance entre les points et .
Événement climatique extrêmeUn événement climatique extrême ou événement météorologique extrême est un phénomène météorologique caractérisé par sa rareté, son intensité ou les dégâts qu'il provoque, selon la définition retenue. Les canicules, vagues de froid, cyclones tropicaux, sécheresses en sont des exemples. La fréquence et l'intensité de certains événements climatiques extrêmes augmentent en conséquence du réchauffement climatique d'origine anthropique.