ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Consistent estimatorIn statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
Corrélation croiséeLa corrélation croisée est parfois utilisée en statistique pour désigner la covariance des vecteurs aléatoires X et Y, afin de distinguer ce concept de la « covariance » d'un vecteur aléatoire, laquelle est comprise comme étant la matrice de covariance des coordonnées du vecteur. En traitement du signal, la corrélation croisée (aussi appelée covariance croisée) est la mesure de la similitude entre deux signaux.
Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Extremum estimatorIn statistics and econometrics, extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a certain objective function, which depends on the data. The general theory of extremum estimators was developed by . An estimator is called an extremum estimator, if there is an objective function such that where Θ is the parameter space. Sometimes a slightly weaker definition is given: where op(1) is the variable converging in probability to zero.
Cross-covarianceIn probability and statistics, given two stochastic processes and , the cross-covariance is a function that gives the covariance of one process with the other at pairs of time points. With the usual notation for the expectation operator, if the processes have the mean functions and , then the cross-covariance is given by Cross-covariance is related to the more commonly used cross-correlation of the processes in question.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.